{"title":"变热物性运动边界问题的Legendre小波残差法","authors":"Jitendra, Vikas Chaurasiya, K. N. Rai, J. Singh","doi":"10.1515/ijnsns-2019-0076","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of the current article is to describe an uni-dimensional moving boundary problem with conduction and convection effect when thermal conductivity and specific heat varying linearly with temperature and time. The Mathematical model has nonlinearity due to presence of variable thermal conductivity and specific heat. A Legendre wavelet residual approach is introduced to get the solution of the problem with high accuracy. The surface heat flux is taken as an exponent function of time while latent heat is presented as an exponent function of position. Galerkin technique is used to obtain the numerical solution in case of constant physical properties while collocation technique is used for variable thermal physical properties. When it is considered that thermal physical properties are constant then obtained numerical solution was compared with exact solution and found in good acceptance. The effect of convection and variable thermal conductivity with time and temperature on the location of the moving layer thickness is analyzed. Further the effect of Peclet number and other physical parameters on the location of moving layer thickness are discussed in detail.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"23 1","pages":"957 - 970"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties\",\"authors\":\"Jitendra, Vikas Chaurasiya, K. N. Rai, J. Singh\",\"doi\":\"10.1515/ijnsns-2019-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main aim of the current article is to describe an uni-dimensional moving boundary problem with conduction and convection effect when thermal conductivity and specific heat varying linearly with temperature and time. The Mathematical model has nonlinearity due to presence of variable thermal conductivity and specific heat. A Legendre wavelet residual approach is introduced to get the solution of the problem with high accuracy. The surface heat flux is taken as an exponent function of time while latent heat is presented as an exponent function of position. Galerkin technique is used to obtain the numerical solution in case of constant physical properties while collocation technique is used for variable thermal physical properties. When it is considered that thermal physical properties are constant then obtained numerical solution was compared with exact solution and found in good acceptance. The effect of convection and variable thermal conductivity with time and temperature on the location of the moving layer thickness is analyzed. Further the effect of Peclet number and other physical parameters on the location of moving layer thickness are discussed in detail.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"23 1\",\"pages\":\"957 - 970\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2019-0076\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2019-0076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties
Abstract The main aim of the current article is to describe an uni-dimensional moving boundary problem with conduction and convection effect when thermal conductivity and specific heat varying linearly with temperature and time. The Mathematical model has nonlinearity due to presence of variable thermal conductivity and specific heat. A Legendre wavelet residual approach is introduced to get the solution of the problem with high accuracy. The surface heat flux is taken as an exponent function of time while latent heat is presented as an exponent function of position. Galerkin technique is used to obtain the numerical solution in case of constant physical properties while collocation technique is used for variable thermal physical properties. When it is considered that thermal physical properties are constant then obtained numerical solution was compared with exact solution and found in good acceptance. The effect of convection and variable thermal conductivity with time and temperature on the location of the moving layer thickness is analyzed. Further the effect of Peclet number and other physical parameters on the location of moving layer thickness are discussed in detail.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.