洞穴型虚拟现实系统中无限大主动立体立体技术的光学特性研究

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
A. Mazikowski
{"title":"洞穴型虚拟现实系统中无限大主动立体立体技术的光学特性研究","authors":"A. Mazikowski","doi":"10.24425/mms.2019.126330","DOIUrl":null,"url":null,"abstract":"In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of optical properties of infitec and active stereo stereoscopic techniques for CAVE-type virtual reality systems\",\"authors\":\"A. Mazikowski\",\"doi\":\"10.24425/mms.2019.126330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.\",\"PeriodicalId\":18394,\"journal\":{\"name\":\"Metrology and Measurement Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrology and Measurement Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/mms.2019.126330\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2019.126330","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1

摘要

近年来,世界上许多科学和工业中心都开发了虚拟现实系统或实验室。目前,最先进的虚拟现实系统是Cave -type (Cave Automatic virtual Environment)安装。这种系统通常由四个、五个或六个投影屏幕组成,以封闭或半封闭空间的形式排列。这类系统的基本任务是确保用户“沉浸”在周围环境中的效果。在这种系统中,用户“沉浸”到虚拟现实中的效果很大程度上取决于系统的光学特性,特别是三维图像的投影质量。本文分析了cave型虚拟现实系统中三维图像的投影技术。概述了这些技术对虚拟现实系统的要求。根据最近在Gdańsk科技大学开设的一个独特的洞穴式虚拟现实实验室进行的测量结果,该实验室配备了两种不同的3D投影技术,名为沉浸式3D可视化实验室(I3DVL),对infinitec和Active Stereo立体投影技术的立体参数和色域进行了检查和讨论。所得结果可用于估计投影系统在cave型虚拟现实装置中的应用质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of optical properties of infitec and active stereo stereoscopic techniques for CAVE-type virtual reality systems
In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrology and Measurement Systems
Metrology and Measurement Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
10.00%
发文量
0
审稿时长
6 months
期刊介绍: Contributions are invited on all aspects of the research, development and applications of the measurement science and technology. The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments. The average publication cycle is 6 months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信