Turán数字T(n,5,3)$ T(n,5,3)$和没有诱导5 -环的图

IF 0.9 3区 数学 Q2 MATHEMATICS
Iliya Bluskov, Jan de Heer, Alexander Sidorenko
{"title":"Turán数字T(n,5,3)$ T(n,5,3)$和没有诱导5 -环的图","authors":"Iliya Bluskov,&nbsp;Jan de Heer,&nbsp;Alexander Sidorenko","doi":"10.1002/jgt.23021","DOIUrl":null,"url":null,"abstract":"<p>The Turán number <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $T(n,5,3)$</annotation>\n </semantics></math> is the minimum size of a system of triples out of a base set <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> elements such that every quintuple in <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> contains a triple from the system. The exact values of <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $T(n,5,3)$</annotation>\n </semantics></math> are known for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≤</mo>\n \n <mn>17</mn>\n </mrow>\n <annotation> $n\\le 17$</annotation>\n </semantics></math>. Turán conjectured that <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mfenced>\n <mfrac>\n <mi>m</mi>\n \n <mn>3</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $T(2m,5,3)=2\\left(\\genfrac{}{}{0.0pt}{}{m}{3}\\right)$</annotation>\n </semantics></math>, and no counterexamples have been found so far. If this conjecture is true, then <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>m</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $T(2m+1,5,3)\\ge \\lceil m(m-2)(2m+1)\\unicode{x02215}6\\rceil $</annotation>\n </semantics></math>. We prove the matching upper bound for all <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>&gt;</mo>\n \n <mn>17</mn>\n </mrow>\n <annotation> $n=2m+1\\gt 17$</annotation>\n </semantics></math> except <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>27</mn>\n </mrow>\n <annotation> $n=27$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"104 3","pages":"451-460"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán numbers \\n \\n \\n T\\n \\n (\\n \\n n\\n ,\\n 5\\n ,\\n 3\\n \\n )\\n \\n \\n $T(n,5,3)$\\n and graphs without induced 5-cycles\",\"authors\":\"Iliya Bluskov,&nbsp;Jan de Heer,&nbsp;Alexander Sidorenko\",\"doi\":\"10.1002/jgt.23021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Turán number <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $T(n,5,3)$</annotation>\\n </semantics></math> is the minimum size of a system of triples out of a base set <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> elements such that every quintuple in <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> contains a triple from the system. The exact values of <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $T(n,5,3)$</annotation>\\n </semantics></math> are known for <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>17</mn>\\n </mrow>\\n <annotation> $n\\\\le 17$</annotation>\\n </semantics></math>. Turán conjectured that <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mfenced>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mn>3</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n <annotation> $T(2m,5,3)=2\\\\left(\\\\genfrac{}{}{0.0pt}{}{m}{3}\\\\right)$</annotation>\\n </semantics></math>, and no counterexamples have been found so far. If this conjecture is true, then <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>m</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n <annotation> $T(2m+1,5,3)\\\\ge \\\\lceil m(m-2)(2m+1)\\\\unicode{x02215}6\\\\rceil $</annotation>\\n </semantics></math>. We prove the matching upper bound for all <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>&gt;</mo>\\n \\n <mn>17</mn>\\n </mrow>\\n <annotation> $n=2m+1\\\\gt 17$</annotation>\\n </semantics></math> except <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mn>27</mn>\\n </mrow>\\n <annotation> $n=27$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"104 3\",\"pages\":\"451-460\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Turán数T(n,5,3)$T(n,5,3)$是n$n$元素的基集X$X$中的三元组系统的最小大小,使得X$X$中的每个五元组都包含来自该系统的三元组。当n≤17$n\le 17$时,T(n,5,3)$T(n、5、3)$的精确值是已知的。Turán推测T(2 m,5,3)=2m 3$T(2,5,3$T)=2\left(\genfrac{}{}{0.0pt}{}}{m}{3}\right)$,到目前为止还没有发现反例。如果这个猜想成立,则T(2m+1,5,3)≥?m(m-2)(2m+1)/6?$T(2m+1,5,3)\ge\lceil m(m-1)\unicode{x02215}6\rceil$。我们证明了除n=27$n=27$以外的所有n=2m+1>17$n=2m+1\gt 17$的匹配上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán numbers T ( n , 5 , 3 ) $T(n,5,3)$ and graphs without induced 5-cycles

The Turán number T ( n , 5 , 3 ) $T(n,5,3)$ is the minimum size of a system of triples out of a base set X $X$ of n $n$ elements such that every quintuple in X $X$ contains a triple from the system. The exact values of T ( n , 5 , 3 ) $T(n,5,3)$ are known for n 17 $n\le 17$ . Turán conjectured that T ( 2 m , 5 , 3 ) = 2 m 3 $T(2m,5,3)=2\left(\genfrac{}{}{0.0pt}{}{m}{3}\right)$ , and no counterexamples have been found so far. If this conjecture is true, then T ( 2 m + 1 , 5 , 3 ) m ( m 2 ) ( 2 m + 1 ) 6 $T(2m+1,5,3)\ge \lceil m(m-2)(2m+1)\unicode{x02215}6\rceil $ . We prove the matching upper bound for all n = 2 m + 1 > 17 $n=2m+1\gt 17$ except n = 27 $n=27$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信