求助PDF
{"title":"Turán数字T(n,5,3)$ T(n,5,3)$和没有诱导5 -环的图","authors":"Iliya Bluskov, Jan de Heer, Alexander Sidorenko","doi":"10.1002/jgt.23021","DOIUrl":null,"url":null,"abstract":"<p>The Turán number <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $T(n,5,3)$</annotation>\n </semantics></math> is the minimum size of a system of triples out of a base set <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> elements such that every quintuple in <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> contains a triple from the system. The exact values of <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $T(n,5,3)$</annotation>\n </semantics></math> are known for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≤</mo>\n \n <mn>17</mn>\n </mrow>\n <annotation> $n\\le 17$</annotation>\n </semantics></math>. Turán conjectured that <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mfenced>\n <mfrac>\n <mi>m</mi>\n \n <mn>3</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $T(2m,5,3)=2\\left(\\genfrac{}{}{0.0pt}{}{m}{3}\\right)$</annotation>\n </semantics></math>, and no counterexamples have been found so far. If this conjecture is true, then <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>m</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $T(2m+1,5,3)\\ge \\lceil m(m-2)(2m+1)\\unicode{x02215}6\\rceil $</annotation>\n </semantics></math>. We prove the matching upper bound for all <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>></mo>\n \n <mn>17</mn>\n </mrow>\n <annotation> $n=2m+1\\gt 17$</annotation>\n </semantics></math> except <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>27</mn>\n </mrow>\n <annotation> $n=27$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"104 3","pages":"451-460"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán numbers \\n \\n \\n T\\n \\n (\\n \\n n\\n ,\\n 5\\n ,\\n 3\\n \\n )\\n \\n \\n $T(n,5,3)$\\n and graphs without induced 5-cycles\",\"authors\":\"Iliya Bluskov, Jan de Heer, Alexander Sidorenko\",\"doi\":\"10.1002/jgt.23021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Turán number <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $T(n,5,3)$</annotation>\\n </semantics></math> is the minimum size of a system of triples out of a base set <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> elements such that every quintuple in <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> contains a triple from the system. The exact values of <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $T(n,5,3)$</annotation>\\n </semantics></math> are known for <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>17</mn>\\n </mrow>\\n <annotation> $n\\\\le 17$</annotation>\\n </semantics></math>. Turán conjectured that <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mfenced>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mn>3</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n <annotation> $T(2m,5,3)=2\\\\left(\\\\genfrac{}{}{0.0pt}{}{m}{3}\\\\right)$</annotation>\\n </semantics></math>, and no counterexamples have been found so far. If this conjecture is true, then <math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>m</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n <annotation> $T(2m+1,5,3)\\\\ge \\\\lceil m(m-2)(2m+1)\\\\unicode{x02215}6\\\\rceil $</annotation>\\n </semantics></math>. We prove the matching upper bound for all <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>></mo>\\n \\n <mn>17</mn>\\n </mrow>\\n <annotation> $n=2m+1\\\\gt 17$</annotation>\\n </semantics></math> except <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mn>27</mn>\\n </mrow>\\n <annotation> $n=27$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"104 3\",\"pages\":\"451-460\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用