Qiangqiang Jiang, Xuan-xuan Lv, Huiru Cui, Teng Ma
{"title":"粘弹性固体推进剂裂纹扩展模拟的计算技术","authors":"Qiangqiang Jiang, Xuan-xuan Lv, Huiru Cui, Teng Ma","doi":"10.1155/2023/8827953","DOIUrl":null,"url":null,"abstract":"To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its corresponding topological operations are proposed step by step. Then, computational simulation implementation process is explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid propellant combined with the experimental findings.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Technique for Crack Propagation Simulation in Viscoelastic Solid Propellant\",\"authors\":\"Qiangqiang Jiang, Xuan-xuan Lv, Huiru Cui, Teng Ma\",\"doi\":\"10.1155/2023/8827953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its corresponding topological operations are proposed step by step. Then, computational simulation implementation process is explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid propellant combined with the experimental findings.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8827953\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8827953","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Computational Technique for Crack Propagation Simulation in Viscoelastic Solid Propellant
To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its corresponding topological operations are proposed step by step. Then, computational simulation implementation process is explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid propellant combined with the experimental findings.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.