非光滑复合向量优化中的近似最优性和近似对偶性

IF 1.4 4区 数学 Q1 MATHEMATICS
Thanatchaporn Sirichunwijit, R. Wangkeeree, Nithirat Sisarat
{"title":"非光滑复合向量优化中的近似最优性和近似对偶性","authors":"Thanatchaporn Sirichunwijit, R. Wangkeeree, Nithirat Sisarat","doi":"10.37193/cjm.2021.03.14","DOIUrl":null,"url":null,"abstract":"This paper concentrates on studying a nonsmooth composite vector optimization problem (P for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020), https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of P. Sufficient optimality conditions for approximate (weakly) efficient solutions to P are also provided by means of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a cone. Moreover, an approximate dual vector problem to P is given and strong and converse duality assertions for approximate (weakly) efficient solutions are proved.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate optimality and approximate duality in nonsmooth composite vector optimization\",\"authors\":\"Thanatchaporn Sirichunwijit, R. Wangkeeree, Nithirat Sisarat\",\"doi\":\"10.37193/cjm.2021.03.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concentrates on studying a nonsmooth composite vector optimization problem (P for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020), https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of P. Sufficient optimality conditions for approximate (weakly) efficient solutions to P are also provided by means of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a cone. Moreover, an approximate dual vector problem to P is given and strong and converse duality assertions for approximate (weakly) efficient solutions are proved.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2021.03.14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2021.03.14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究一个非光滑复合向量优化问题(简称P)。我们在[Chung,T.D.中建立了一个非凸和非凸锥约束向量优化问题的近似(弱)有效解的模糊必要条件。非光滑和非凸圆锥约束向量优化中的近似解Ann.Oper.Res.(2020),https://doi.org/10.1007/s10479-020-03740-3.]以及广义微分的链式规则,以提供P的近似(弱)有效解在Fritz-John型中表现出的必要条件。通过提出使用关于锥的(严格)近似广义凸复合向量函数,也提供了P的近似(弱)有效解的充分最优性条件。此外,给出了P的一个近似对偶向量问题,并证明了近似(弱)有效解的强对偶断言和逆对偶断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate optimality and approximate duality in nonsmooth composite vector optimization
This paper concentrates on studying a nonsmooth composite vector optimization problem (P for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020), https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of P. Sufficient optimality conditions for approximate (weakly) efficient solutions to P are also provided by means of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a cone. Moreover, an approximate dual vector problem to P is given and strong and converse duality assertions for approximate (weakly) efficient solutions are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信