Thanatchaporn Sirichunwijit, R. Wangkeeree, Nithirat Sisarat
{"title":"非光滑复合向量优化中的近似最优性和近似对偶性","authors":"Thanatchaporn Sirichunwijit, R. Wangkeeree, Nithirat Sisarat","doi":"10.37193/cjm.2021.03.14","DOIUrl":null,"url":null,"abstract":"This paper concentrates on studying a nonsmooth composite vector optimization problem (P for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020), https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of P. Sufficient optimality conditions for approximate (weakly) efficient solutions to P are also provided by means of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a cone. Moreover, an approximate dual vector problem to P is given and strong and converse duality assertions for approximate (weakly) efficient solutions are proved.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate optimality and approximate duality in nonsmooth composite vector optimization\",\"authors\":\"Thanatchaporn Sirichunwijit, R. Wangkeeree, Nithirat Sisarat\",\"doi\":\"10.37193/cjm.2021.03.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concentrates on studying a nonsmooth composite vector optimization problem (P for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020), https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of P. Sufficient optimality conditions for approximate (weakly) efficient solutions to P are also provided by means of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a cone. Moreover, an approximate dual vector problem to P is given and strong and converse duality assertions for approximate (weakly) efficient solutions are proved.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2021.03.14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2021.03.14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximate optimality and approximate duality in nonsmooth composite vector optimization
This paper concentrates on studying a nonsmooth composite vector optimization problem (P for brevity). We employ a fuzzy necessary condition for approximate (weakly) efficient solutions of a nonconvex and nonsmooth cone constrained vector optimization problem established in [Choung, T. D. Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization Ann. Oper. Res. (2020), https://doi.org/10.1007/s10479-020-03740-3.] and the a chain rule for generalized differentiation to provide a necessary condition which exhibited in a Fritz-John type for approximate (weakly) efficient solutions of P. Sufficient optimality conditions for approximate (weakly) efficient solutions to P are also provided by means of proposing the use of (strictly) approximately generalized convex composite vector functions with respect to a cone. Moreover, an approximate dual vector problem to P is given and strong and converse duality assertions for approximate (weakly) efficient solutions are proved.
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.