用于检测在EWMA控制图上运行的长内存分数积分MAX过程变化的精确平均运行长度分析

Q3 Mathematics
W. Peerajit
{"title":"用于检测在EWMA控制图上运行的长内存分数积分MAX过程变化的精确平均运行长度分析","authors":"W. Peerajit","doi":"10.37394/23206.2023.22.58","DOIUrl":null,"url":null,"abstract":"Numerical evaluation of the average run length (ARL) when detecting changes in the mean of an autocorrelated process running on an exponentially weighted moving average (EWMA) control chart has received considerable attention. However, accurate computation of the ARL of changes in the mean of a long-memory model with an exogenous (X) variable, which often occurs in practice, is challenging. Herein, we provide an accurate determination of the ARL for long-memory models such as the fractionally integrated MAX processes (FIMAX) with exponential white noise running on an EWMA control chart by using an analytical formula based on an integral equation. From a computational perspective, the analytical formula approach is accomplished by solving the solution for the integral equation obtained via the Fredholm integral equation of the second kind. Moreover, the existence and uniqueness of the solution for the analytical formula were confirmed via Banach’s fixed-point theorem. Its efficacy was compared with that of the ARL derived by using the well-known numerical integral equation (NIE) technique under the same circumstances in terms of the ARL percentage accuracy and computational processing time. The percentage accuracy was 100%, which indicates excellent agreement between the two methods, and the analytical formula also required much less computational processing time. An example to illustrate the effectiveness of the proposed approach with a process involving real data running on an EWMA control chart is also provided herein. The explicit formula method offers an accurate determination of the ARL and a new approach for validating its computation, especially for long-memory scenarios running on EWMA control charts.","PeriodicalId":55878,"journal":{"name":"WSEAS Transactions on Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accurate Average Run Length Analysis for Detecting Changes in a Long-Memory Fractionally Integrated MAX Process Running on EWMA Control Chart\",\"authors\":\"W. Peerajit\",\"doi\":\"10.37394/23206.2023.22.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical evaluation of the average run length (ARL) when detecting changes in the mean of an autocorrelated process running on an exponentially weighted moving average (EWMA) control chart has received considerable attention. However, accurate computation of the ARL of changes in the mean of a long-memory model with an exogenous (X) variable, which often occurs in practice, is challenging. Herein, we provide an accurate determination of the ARL for long-memory models such as the fractionally integrated MAX processes (FIMAX) with exponential white noise running on an EWMA control chart by using an analytical formula based on an integral equation. From a computational perspective, the analytical formula approach is accomplished by solving the solution for the integral equation obtained via the Fredholm integral equation of the second kind. Moreover, the existence and uniqueness of the solution for the analytical formula were confirmed via Banach’s fixed-point theorem. Its efficacy was compared with that of the ARL derived by using the well-known numerical integral equation (NIE) technique under the same circumstances in terms of the ARL percentage accuracy and computational processing time. The percentage accuracy was 100%, which indicates excellent agreement between the two methods, and the analytical formula also required much less computational processing time. An example to illustrate the effectiveness of the proposed approach with a process involving real data running on an EWMA control chart is also provided herein. The explicit formula method offers an accurate determination of the ARL and a new approach for validating its computation, especially for long-memory scenarios running on EWMA control charts.\",\"PeriodicalId\":55878,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2023.22.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2023.22.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

当在指数加权移动平均(EWMA)控制图上检测自相关过程的平均值变化时,对平均运行长度(ARL)的数值评估受到了相当大的关注。然而,在实践中经常发生的具有外生(X)变量的长记忆模型的平均值变化的ARL的精确计算是具有挑战性的。本文采用基于积分方程的解析公式,对长记忆模型(如在EWMA控制图上运行的带有指数白噪声的分数积分MAX过程(FIMAX))的ARL进行了精确的确定。从计算角度来看,解析公式方法是通过求解第二类Fredholm积分方程得到的积分方程的解来完成的。利用Banach不动点定理,证明了解析式解的存在唯一性。在相同条件下,将其与采用著名的数值积分方程(NIE)技术得到的ARL在ARL百分比精度和计算处理时间方面进行了比较。两种方法的准确度达到100%,表明两种方法的一致性很好,并且分析公式所需的计算时间也大大减少。最后以实际数据在EWMA控制图上运行的过程为例,说明了所提方法的有效性。显式公式方法提供了精确的ARL确定和验证其计算的新方法,特别是对于运行在EWMA控制图上的长内存场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Average Run Length Analysis for Detecting Changes in a Long-Memory Fractionally Integrated MAX Process Running on EWMA Control Chart
Numerical evaluation of the average run length (ARL) when detecting changes in the mean of an autocorrelated process running on an exponentially weighted moving average (EWMA) control chart has received considerable attention. However, accurate computation of the ARL of changes in the mean of a long-memory model with an exogenous (X) variable, which often occurs in practice, is challenging. Herein, we provide an accurate determination of the ARL for long-memory models such as the fractionally integrated MAX processes (FIMAX) with exponential white noise running on an EWMA control chart by using an analytical formula based on an integral equation. From a computational perspective, the analytical formula approach is accomplished by solving the solution for the integral equation obtained via the Fredholm integral equation of the second kind. Moreover, the existence and uniqueness of the solution for the analytical formula were confirmed via Banach’s fixed-point theorem. Its efficacy was compared with that of the ARL derived by using the well-known numerical integral equation (NIE) technique under the same circumstances in terms of the ARL percentage accuracy and computational processing time. The percentage accuracy was 100%, which indicates excellent agreement between the two methods, and the analytical formula also required much less computational processing time. An example to illustrate the effectiveness of the proposed approach with a process involving real data running on an EWMA control chart is also provided herein. The explicit formula method offers an accurate determination of the ARL and a new approach for validating its computation, especially for long-memory scenarios running on EWMA control charts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Mathematics
WSEAS Transactions on Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
93
期刊介绍: WSEAS Transactions on Mathematics publishes original research papers relating to applied and theoretical mathematics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with linear algebra, numerical analysis, differential equations, statistics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信