关于非正曲率秩一曲面测地流相变的注记

Pub Date : 2022-09-22 DOI:10.1080/14689367.2023.2229752
K. Burns, Dong Chen
{"title":"关于非正曲率秩一曲面测地流相变的注记","authors":"K. Burns, Dong Chen","doi":"10.1080/14689367.2023.2229752","DOIUrl":null,"url":null,"abstract":"For any rank 1 nonpositively curved surface $M$, it was proved by Burns-Climenhaga-Fisher-Thompson that for any $q<1$, there exists a unique equilibrium state $\\mu_q$ for $q\\varphi^u$, where $\\varphi^u$ is the geometric potential. We show that as $q\\to 1-$, the weak$^*$ limit of $\\mu_q$ is the restriction of the Liouville measure to the regular set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on the phase transition for the geodesic flow of a rank one surface of nonpositive curvature\",\"authors\":\"K. Burns, Dong Chen\",\"doi\":\"10.1080/14689367.2023.2229752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any rank 1 nonpositively curved surface $M$, it was proved by Burns-Climenhaga-Fisher-Thompson that for any $q<1$, there exists a unique equilibrium state $\\\\mu_q$ for $q\\\\varphi^u$, where $\\\\varphi^u$ is the geometric potential. We show that as $q\\\\to 1-$, the weak$^*$ limit of $\\\\mu_q$ is the restriction of the Liouville measure to the regular set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2229752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2229752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意1阶非正曲面$M$, Burns-Climenhaga-Fisher-Thompson证明了对于任意$q<1$,对于$q\varphi^u$存在唯一的平衡态$\mu_q$,其中$\varphi^u$为几何势。我们证明,作为$q\to 1-$, $\mu_q$的弱$^*$极限是刘维尔测度对正则集的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A remark on the phase transition for the geodesic flow of a rank one surface of nonpositive curvature
For any rank 1 nonpositively curved surface $M$, it was proved by Burns-Climenhaga-Fisher-Thompson that for any $q<1$, there exists a unique equilibrium state $\mu_q$ for $q\varphi^u$, where $\varphi^u$ is the geometric potential. We show that as $q\to 1-$, the weak$^*$ limit of $\mu_q$ is the restriction of the Liouville measure to the regular set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信