Beatriz Sánchez-Cano, Mark Lester, David J. Andrews, Hermann Opgenoorth, Robert Lillis, François Leblanc, Christopher M. Fowler, Xiaohua Fang, Oleg Vaisberg, Majd Mayyasi, Mika Holmberg, Jingnan Guo, Maria Hamrin, Christian Mazelle, Kerstin Peter, Martin Pätzold, Katerina Stergiopoulou, Charlotte Goetz, Vladimir Nikolaevich Ermakov, Sergei Shuvalov, James A. Wild, Pierre-Louis Blelly, Michael Mendillo, Cesar Bertucci, Marco Cartacci, Roberto Orosei, Feng Chu, Andrew J. Kopf, Zachary Girazian, Michael T. Roman
{"title":"火星等离子体系统。协同多点任务的科学潜力:“下一代”","authors":"Beatriz Sánchez-Cano, Mark Lester, David J. Andrews, Hermann Opgenoorth, Robert Lillis, François Leblanc, Christopher M. Fowler, Xiaohua Fang, Oleg Vaisberg, Majd Mayyasi, Mika Holmberg, Jingnan Guo, Maria Hamrin, Christian Mazelle, Kerstin Peter, Martin Pätzold, Katerina Stergiopoulou, Charlotte Goetz, Vladimir Nikolaevich Ermakov, Sergei Shuvalov, James A. Wild, Pierre-Louis Blelly, Michael Mendillo, Cesar Bertucci, Marco Cartacci, Roberto Orosei, Feng Chu, Andrew J. Kopf, Zachary Girazian, Michael T. Roman","doi":"10.1007/s10686-021-09790-0","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this White Paper, submitted to ESA’s Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars’ magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"641 - 676"},"PeriodicalIF":2.7000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-021-09790-0.pdf","citationCount":"10","resultStr":"{\"title\":\"Mars’ plasma system. Scientific potential of coordinated multipoint missions: “The next generation”\",\"authors\":\"Beatriz Sánchez-Cano, Mark Lester, David J. Andrews, Hermann Opgenoorth, Robert Lillis, François Leblanc, Christopher M. Fowler, Xiaohua Fang, Oleg Vaisberg, Majd Mayyasi, Mika Holmberg, Jingnan Guo, Maria Hamrin, Christian Mazelle, Kerstin Peter, Martin Pätzold, Katerina Stergiopoulou, Charlotte Goetz, Vladimir Nikolaevich Ermakov, Sergei Shuvalov, James A. Wild, Pierre-Louis Blelly, Michael Mendillo, Cesar Bertucci, Marco Cartacci, Roberto Orosei, Feng Chu, Andrew J. Kopf, Zachary Girazian, Michael T. Roman\",\"doi\":\"10.1007/s10686-021-09790-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this White Paper, submitted to ESA’s Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars’ magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"54 2-3\",\"pages\":\"641 - 676\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-021-09790-0.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-021-09790-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-021-09790-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Mars’ plasma system. Scientific potential of coordinated multipoint missions: “The next generation”
The objective of this White Paper, submitted to ESA’s Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars’ magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.