{"title":"双歧杆菌OZ2和海洋细胞芽孢杆菌OZ5共同培养瘤胃纤维素酶产量的研究","authors":"M. Baltaci","doi":"10.1080/10242422.2022.2038581","DOIUrl":null,"url":null,"abstract":"Abstract Cellulose is considered to be an alternative form of energy, and has recently gained significance representing millions of dollars for countries that have the opportunity to obtain energy from it. At the same time, cellulosic biomaterials are attractive since they are both cheap and abundant. To use this important resource, its stubborn structure must be broken down. Rumen bacteria are regarded as unique for this job. In this study, 17 cellulolytic bacteria were isolated from rumen samples collected from Erzurum slaughterhouses. Three bacteria (OZ2, OZ5, OZ17) with maximum enzyme activity were identified by sequencing the 16S rRNA gene region. As a result of the sequence analysis, it was determined that isolates belong to Streptomyces ambofaciens OZ2, Cytobacillus oceanisediminis OZ5, and Streptomyces violaceochromogenes OZ17. Then, cellulase production potentials of these identified bacteria were investigated as single and co-cultures. The co-culture of OZ2 and OZ5 demonstrated the best cellulase activity (26 U/mL). As a result of the optimization studies for the co-culture of OZ2 and OZ5, the best culture conditions were 3 g/L yeast extract, 60 h incubation time, pH 6, and temperature 35 °C. Under optimized conditions, the cellulase enzyme activity increased approximately 3.5-fold to 56 U/mL.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":"40 1","pages":"144 - 152"},"PeriodicalIF":1.4000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples\",\"authors\":\"M. Baltaci\",\"doi\":\"10.1080/10242422.2022.2038581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cellulose is considered to be an alternative form of energy, and has recently gained significance representing millions of dollars for countries that have the opportunity to obtain energy from it. At the same time, cellulosic biomaterials are attractive since they are both cheap and abundant. To use this important resource, its stubborn structure must be broken down. Rumen bacteria are regarded as unique for this job. In this study, 17 cellulolytic bacteria were isolated from rumen samples collected from Erzurum slaughterhouses. Three bacteria (OZ2, OZ5, OZ17) with maximum enzyme activity were identified by sequencing the 16S rRNA gene region. As a result of the sequence analysis, it was determined that isolates belong to Streptomyces ambofaciens OZ2, Cytobacillus oceanisediminis OZ5, and Streptomyces violaceochromogenes OZ17. Then, cellulase production potentials of these identified bacteria were investigated as single and co-cultures. The co-culture of OZ2 and OZ5 demonstrated the best cellulase activity (26 U/mL). As a result of the optimization studies for the co-culture of OZ2 and OZ5, the best culture conditions were 3 g/L yeast extract, 60 h incubation time, pH 6, and temperature 35 °C. Under optimized conditions, the cellulase enzyme activity increased approximately 3.5-fold to 56 U/mL.\",\"PeriodicalId\":8824,\"journal\":{\"name\":\"Biocatalysis and Biotransformation\",\"volume\":\"40 1\",\"pages\":\"144 - 152\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and Biotransformation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10242422.2022.2038581\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2022.2038581","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples
Abstract Cellulose is considered to be an alternative form of energy, and has recently gained significance representing millions of dollars for countries that have the opportunity to obtain energy from it. At the same time, cellulosic biomaterials are attractive since they are both cheap and abundant. To use this important resource, its stubborn structure must be broken down. Rumen bacteria are regarded as unique for this job. In this study, 17 cellulolytic bacteria were isolated from rumen samples collected from Erzurum slaughterhouses. Three bacteria (OZ2, OZ5, OZ17) with maximum enzyme activity were identified by sequencing the 16S rRNA gene region. As a result of the sequence analysis, it was determined that isolates belong to Streptomyces ambofaciens OZ2, Cytobacillus oceanisediminis OZ5, and Streptomyces violaceochromogenes OZ17. Then, cellulase production potentials of these identified bacteria were investigated as single and co-cultures. The co-culture of OZ2 and OZ5 demonstrated the best cellulase activity (26 U/mL). As a result of the optimization studies for the co-culture of OZ2 and OZ5, the best culture conditions were 3 g/L yeast extract, 60 h incubation time, pH 6, and temperature 35 °C. Under optimized conditions, the cellulase enzyme activity increased approximately 3.5-fold to 56 U/mL.
期刊介绍:
Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species.
Papers are published in the areas of:
Mechanistic principles
Kinetics and thermodynamics of biocatalytic processes
Chemical or genetic modification of biocatalysts
Developments in biocatalyst''s immobilization
Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes
Biomimetic systems
Environmental applications of biocatalysis
Metabolic engineering
Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.