Ricardo Andres Diaz Suárez, Leidy Tatiana Moreno Moreno, Marlon Andres Sanjuan Vargas, Carlos Alberto Prada Garcia, Luis Dalmiro Torres
{"title":"用于肘关节屈伸运动康复的外骨骼的研制","authors":"Ricardo Andres Diaz Suárez, Leidy Tatiana Moreno Moreno, Marlon Andres Sanjuan Vargas, Carlos Alberto Prada Garcia, Luis Dalmiro Torres","doi":"10.15332/ITECKNE.V18I1.2539","DOIUrl":null,"url":null,"abstract":"In this research work, the development of an electro-mechanical device for the rehabilitation of the flexor-extensor movement of the elbow with rehabilitative potential is presented. For the development of this prototype, an elbow joint was designed and built which allows movements from 0 ° to 120 °. The design of the gear system was carried out using Solid Edge software from a previous selection of the step motor that offered enough torque to achieve flexion and extension of the elbow, then for the construction of this system a 3D printing was used in PLA. This system was coupled to a hinged arm stabilizer system. The prototype is operated from a software application on Android using the IDE MITapp inventor, which sends the desired angulation to an Arduino device which implements a digital control system. To improve the perception of exoskeleton therapy, a telerehabilitation software application was developed using IDE processing and a Kinect body recognition device, which guides the patient in an interactive therapy where they perform the rehabilitation of flexion and extension movement by guiding a virtual object from one angle to another.","PeriodicalId":53892,"journal":{"name":"Revista Iteckne","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of an exoskeleton for the rehabilitation of the flexo-extensor movement of the elbow\",\"authors\":\"Ricardo Andres Diaz Suárez, Leidy Tatiana Moreno Moreno, Marlon Andres Sanjuan Vargas, Carlos Alberto Prada Garcia, Luis Dalmiro Torres\",\"doi\":\"10.15332/ITECKNE.V18I1.2539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, the development of an electro-mechanical device for the rehabilitation of the flexor-extensor movement of the elbow with rehabilitative potential is presented. For the development of this prototype, an elbow joint was designed and built which allows movements from 0 ° to 120 °. The design of the gear system was carried out using Solid Edge software from a previous selection of the step motor that offered enough torque to achieve flexion and extension of the elbow, then for the construction of this system a 3D printing was used in PLA. This system was coupled to a hinged arm stabilizer system. The prototype is operated from a software application on Android using the IDE MITapp inventor, which sends the desired angulation to an Arduino device which implements a digital control system. To improve the perception of exoskeleton therapy, a telerehabilitation software application was developed using IDE processing and a Kinect body recognition device, which guides the patient in an interactive therapy where they perform the rehabilitation of flexion and extension movement by guiding a virtual object from one angle to another.\",\"PeriodicalId\":53892,\"journal\":{\"name\":\"Revista Iteckne\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Iteckne\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15332/ITECKNE.V18I1.2539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iteckne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15332/ITECKNE.V18I1.2539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of an exoskeleton for the rehabilitation of the flexo-extensor movement of the elbow
In this research work, the development of an electro-mechanical device for the rehabilitation of the flexor-extensor movement of the elbow with rehabilitative potential is presented. For the development of this prototype, an elbow joint was designed and built which allows movements from 0 ° to 120 °. The design of the gear system was carried out using Solid Edge software from a previous selection of the step motor that offered enough torque to achieve flexion and extension of the elbow, then for the construction of this system a 3D printing was used in PLA. This system was coupled to a hinged arm stabilizer system. The prototype is operated from a software application on Android using the IDE MITapp inventor, which sends the desired angulation to an Arduino device which implements a digital control system. To improve the perception of exoskeleton therapy, a telerehabilitation software application was developed using IDE processing and a Kinect body recognition device, which guides the patient in an interactive therapy where they perform the rehabilitation of flexion and extension movement by guiding a virtual object from one angle to another.