孔雀石和方解石的溶解组分对表面性质和浮选行为的影响

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihao Shen, Shuming Wen, Han Wang, Yongchao Miao, Xiao Wang, Shengbing Meng, Qicheng Feng
{"title":"孔雀石和方解石的溶解组分对表面性质和浮选行为的影响","authors":"Zhihao Shen,&nbsp;Shuming Wen,&nbsp;Han Wang,&nbsp;Yongchao Miao,&nbsp;Xiao Wang,&nbsp;Shengbing Meng,&nbsp;Qicheng Feng","doi":"10.1007/s12613-023-2606-9","DOIUrl":null,"url":null,"abstract":"<div><p>In general, malachite is recovered via sulfidization–xanthate flotation, although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite. This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals. In this study, the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated. Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced, while the presence of the malachite supernatant increased the recovery of calcite. Dissolution and adsorption tests, along with zeta potential measurements, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry, and time-of-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface, which hindered the interaction of Na<sub>2</sub>S with malachite, thereby resulting in the insufficient adsorption of sodium isoamyl xanthate (NaIX) on the surface of malachite. By contrast, the Cu species in the malachite supernatant were adsorbed on the calcite surface, and they provided active sites for the subsequent adsorption of Na<sub>2</sub>S and NaIX.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 7","pages":"1297 - 1309"},"PeriodicalIF":5.6000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Effect of dissolved components of malachite and calcite on surface properties and flotation behavior\",\"authors\":\"Zhihao Shen,&nbsp;Shuming Wen,&nbsp;Han Wang,&nbsp;Yongchao Miao,&nbsp;Xiao Wang,&nbsp;Shengbing Meng,&nbsp;Qicheng Feng\",\"doi\":\"10.1007/s12613-023-2606-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In general, malachite is recovered via sulfidization–xanthate flotation, although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite. This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals. In this study, the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated. Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced, while the presence of the malachite supernatant increased the recovery of calcite. Dissolution and adsorption tests, along with zeta potential measurements, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry, and time-of-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface, which hindered the interaction of Na<sub>2</sub>S with malachite, thereby resulting in the insufficient adsorption of sodium isoamyl xanthate (NaIX) on the surface of malachite. By contrast, the Cu species in the malachite supernatant were adsorbed on the calcite surface, and they provided active sites for the subsequent adsorption of Na<sub>2</sub>S and NaIX.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 7\",\"pages\":\"1297 - 1309\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2606-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2606-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

摘要

一般来说,孔雀石是通过硫化-黄药浮选回收的,尽管由于伴生方解石的存在,经常得到许多不满意的浮选指标。这种现象的发生是因为孔雀石和方解石的溶解成分影响了这两种矿物的浮选行为。研究了孔雀石和方解石的溶解组分对两种矿物浮选行为和表面特征的影响。浮选试验表明,方解石上清液的加入降低了孔雀石的回收率,而孔雀石上清液的加入提高了方解石的回收率。溶解和吸附实验,以及zeta电位测量、x射线光电子能谱、傅立叶变换红外光谱和飞行时间二次离子质谱分析表明,方解石上清中的Ca被吸附在孔雀石表面,阻碍了Na2S与孔雀石的相互作用,从而导致异丙基黄药钠(NaIX)在孔雀石表面的吸附不足。孔雀石上清液中的Cu物质被吸附在方解石表面,为后续吸附Na2S和NaIX提供了活性位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of dissolved components of malachite and calcite on surface properties and flotation behavior

In general, malachite is recovered via sulfidization–xanthate flotation, although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite. This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals. In this study, the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated. Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced, while the presence of the malachite supernatant increased the recovery of calcite. Dissolution and adsorption tests, along with zeta potential measurements, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry, and time-of-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface, which hindered the interaction of Na2S with malachite, thereby resulting in the insufficient adsorption of sodium isoamyl xanthate (NaIX) on the surface of malachite. By contrast, the Cu species in the malachite supernatant were adsorbed on the calcite surface, and they provided active sites for the subsequent adsorption of Na2S and NaIX.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信