基于人类轨迹预测和混合感知的移动机器人社交人群导航

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hao-Yun Chen, Pei-Han Huang, Li-Chen Fu
{"title":"基于人类轨迹预测和混合感知的移动机器人社交人群导航","authors":"Hao-Yun Chen,&nbsp;Pei-Han Huang,&nbsp;Li-Chen Fu","doi":"10.1007/s10514-023-10103-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper propose a hierarchical path planning algorithm that first captures the local crowd movement around the robot using RGB camera combined with LiDAR and predicts the movement of people nearby the robot, and then generates appropriate global path for the robot using the global path planner with the crowd information. After deciding the global path, the low-level control system receives the prediction results of the crowd and high-level global path, and generates the actual speed control commands for the robot after considering the social norms. With the high accuracy of computer vision for human recognition and the high precision of LiDAR, the system is able to accurately track the surrounding human locations. Through high-level path planning, the robot can use different movement strategies in different scenarios, while the crowd prediction allows the robot to generate more efficient and socially acceptable paths. With this system, even in a highly dynamic environment caused by the crowd, the robot can still plan an appropriate path reach the destination without causing psychological discomfort to others successfully.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10103-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Social crowd navigation of a mobile robot based on human trajectory prediction and hybrid sensing\",\"authors\":\"Hao-Yun Chen,&nbsp;Pei-Han Huang,&nbsp;Li-Chen Fu\",\"doi\":\"10.1007/s10514-023-10103-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper propose a hierarchical path planning algorithm that first captures the local crowd movement around the robot using RGB camera combined with LiDAR and predicts the movement of people nearby the robot, and then generates appropriate global path for the robot using the global path planner with the crowd information. After deciding the global path, the low-level control system receives the prediction results of the crowd and high-level global path, and generates the actual speed control commands for the robot after considering the social norms. With the high accuracy of computer vision for human recognition and the high precision of LiDAR, the system is able to accurately track the surrounding human locations. Through high-level path planning, the robot can use different movement strategies in different scenarios, while the crowd prediction allows the robot to generate more efficient and socially acceptable paths. With this system, even in a highly dynamic environment caused by the crowd, the robot can still plan an appropriate path reach the destination without causing psychological discomfort to others successfully.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-023-10103-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10103-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10103-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种分层路径规划算法,该算法首先使用RGB相机结合激光雷达捕捉机器人周围的局部人群运动,并预测机器人附近人群的运动,然后使用具有人群信息的全局路径规划器为机器人生成合适的全局路径。在确定全局路径后,低级控制系统接收人群和高级全局路径的预测结果,并在考虑社会规范后生成机器人的实际速度控制命令。凭借计算机视觉对人类识别的高精度和激光雷达的高精度,该系统能够准确跟踪周围的人类位置。通过高级路径规划,机器人可以在不同场景中使用不同的运动策略,而人群预测则可以让机器人生成更高效、更容易被社会接受的路径。有了这个系统,即使在人群造成的高度动态环境中,机器人仍然可以规划一条到达目的地的合适路径,而不会成功地给其他人带来心理不适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Social crowd navigation of a mobile robot based on human trajectory prediction and hybrid sensing

Social crowd navigation of a mobile robot based on human trajectory prediction and hybrid sensing

This paper propose a hierarchical path planning algorithm that first captures the local crowd movement around the robot using RGB camera combined with LiDAR and predicts the movement of people nearby the robot, and then generates appropriate global path for the robot using the global path planner with the crowd information. After deciding the global path, the low-level control system receives the prediction results of the crowd and high-level global path, and generates the actual speed control commands for the robot after considering the social norms. With the high accuracy of computer vision for human recognition and the high precision of LiDAR, the system is able to accurately track the surrounding human locations. Through high-level path planning, the robot can use different movement strategies in different scenarios, while the crowd prediction allows the robot to generate more efficient and socially acceptable paths. With this system, even in a highly dynamic environment caused by the crowd, the robot can still plan an appropriate path reach the destination without causing psychological discomfort to others successfully.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信