用于高效太阳能蒸汽生成的3D木质蒸发器

IF 2.2 3区 农林科学 Q2 FORESTRY
Holzforschung Pub Date : 2023-05-25 DOI:10.1515/hf-2022-0185
Meihua Xie, Ping Zhang, Yangbing Jin, Zhe Wang, C. Jin
{"title":"用于高效太阳能蒸汽生成的3D木质蒸发器","authors":"Meihua Xie, Ping Zhang, Yangbing Jin, Zhe Wang, C. Jin","doi":"10.1515/hf-2022-0185","DOIUrl":null,"url":null,"abstract":"Abstract Interfacial solar-driven steam generation is one of the most promising techniques used to produce clean water. However, achieving rapid water evaporation using solar steam generation devices is challenging because of their two-dimensional (2D) planar structures and confined evaporation areas. The three-dimensional (3D) structural design of evaporation devices improves water evaporation rates, thereby enhancing solar-driven steam generation. This study developed a 3D wood-based evaporator through 3D structure shaping and the flexible treatment of wood that involved coating photothermal materials with tannic acid. Because of the ampliative evaporation area and outstanding absorption, the water evaporation rate of the prepared 3D wood-based evaporator was as high as 2.5 kg m−2 h−1, and the efficiency of energy transformation was up to 101 % under simulated 1-sun irradiation; the evaporation rate and efficiency of energy transformation were considerably higher than those of 2D planar wood evaporators. Furthermore, the effective seawater desalination performance and good durability of the 3D wood-based evaporator were demonstrated. This study provides different insights into the fabrication of high-efficiency wood-based solar steam generators with high prospects for application in seawater desalination.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"77 1","pages":"566 - 576"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D wood-based evaporator for highly efficient solar steam generation\",\"authors\":\"Meihua Xie, Ping Zhang, Yangbing Jin, Zhe Wang, C. Jin\",\"doi\":\"10.1515/hf-2022-0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Interfacial solar-driven steam generation is one of the most promising techniques used to produce clean water. However, achieving rapid water evaporation using solar steam generation devices is challenging because of their two-dimensional (2D) planar structures and confined evaporation areas. The three-dimensional (3D) structural design of evaporation devices improves water evaporation rates, thereby enhancing solar-driven steam generation. This study developed a 3D wood-based evaporator through 3D structure shaping and the flexible treatment of wood that involved coating photothermal materials with tannic acid. Because of the ampliative evaporation area and outstanding absorption, the water evaporation rate of the prepared 3D wood-based evaporator was as high as 2.5 kg m−2 h−1, and the efficiency of energy transformation was up to 101 % under simulated 1-sun irradiation; the evaporation rate and efficiency of energy transformation were considerably higher than those of 2D planar wood evaporators. Furthermore, the effective seawater desalination performance and good durability of the 3D wood-based evaporator were demonstrated. This study provides different insights into the fabrication of high-efficiency wood-based solar steam generators with high prospects for application in seawater desalination.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\"77 1\",\"pages\":\"566 - 576\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2022-0185\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2022-0185","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

摘要界面太阳能蒸汽发电是生产清洁水最有前景的技术之一。然而,由于其二维(2D)平面结构和有限的蒸发面积,使用太阳能蒸汽产生装置实现快速水蒸发是具有挑战性的。蒸发装置的三维(3D)结构设计提高了水的蒸发率,从而增强了太阳能驱动的蒸汽生成。本研究通过3D结构成型和木材的柔性处理,包括用单宁酸涂覆光热材料,开发了一种3D木质蒸发器。由于蒸发面积大、吸收能力强,所制备的三维木质蒸发器的水分蒸发率高达2.5 公斤 m−2 h−1,能量转换效率高达101 % 在模拟1太阳照射下;蒸发速率和能量转换效率显著高于2D平面木材蒸发器。此外,还证明了三维木质蒸发器的有效海水淡化性能和良好的耐用性。这项研究为高效木质太阳能蒸汽发生器的制造提供了不同的见解,在海水淡化中具有很高的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D wood-based evaporator for highly efficient solar steam generation
Abstract Interfacial solar-driven steam generation is one of the most promising techniques used to produce clean water. However, achieving rapid water evaporation using solar steam generation devices is challenging because of their two-dimensional (2D) planar structures and confined evaporation areas. The three-dimensional (3D) structural design of evaporation devices improves water evaporation rates, thereby enhancing solar-driven steam generation. This study developed a 3D wood-based evaporator through 3D structure shaping and the flexible treatment of wood that involved coating photothermal materials with tannic acid. Because of the ampliative evaporation area and outstanding absorption, the water evaporation rate of the prepared 3D wood-based evaporator was as high as 2.5 kg m−2 h−1, and the efficiency of energy transformation was up to 101 % under simulated 1-sun irradiation; the evaporation rate and efficiency of energy transformation were considerably higher than those of 2D planar wood evaporators. Furthermore, the effective seawater desalination performance and good durability of the 3D wood-based evaporator were demonstrated. This study provides different insights into the fabrication of high-efficiency wood-based solar steam generators with high prospects for application in seawater desalination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Holzforschung
Holzforschung 工程技术-材料科学:纸与木材
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
3.3 months
期刊介绍: Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信