求解凸可行性和单调包含问题的一种新的自适应惯性cq算法

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
C. Enyi, O. Iyiola, Chinedu G. Ezea
{"title":"求解凸可行性和单调包含问题的一种新的自适应惯性cq算法","authors":"C. Enyi, O. Iyiola, Chinedu G. Ezea","doi":"10.1515/ijnsns-2021-0322","DOIUrl":null,"url":null,"abstract":"Abstract Using a dynamical step size technique, a new self-adaptive CQ-algorithm is proposed in the presence of an inertial term to find the solution of convex feasibility problem and monotone inclusion problem involving a finite number of maximal monotone set valued operators. To do this, in certain Banach spaces, we construct an algorithm which converges to the fixed point of right Bregman strongly nonexpansive mappings and coincidentally solves the convex feasibility and monotone inclusion problems. Strong convergence of the algorithm is achieved without computation of the associated operator norms. Interesting numerical examples which illustrate the implementation and efficiency of our scheme are also given. Results obtained via this work improve and extend on previous results of its kind, in the literature.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new self-adaptive inertial CQ-algorithm for solving convex feasibility and monotone inclusion problems\",\"authors\":\"C. Enyi, O. Iyiola, Chinedu G. Ezea\",\"doi\":\"10.1515/ijnsns-2021-0322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using a dynamical step size technique, a new self-adaptive CQ-algorithm is proposed in the presence of an inertial term to find the solution of convex feasibility problem and monotone inclusion problem involving a finite number of maximal monotone set valued operators. To do this, in certain Banach spaces, we construct an algorithm which converges to the fixed point of right Bregman strongly nonexpansive mappings and coincidentally solves the convex feasibility and monotone inclusion problems. Strong convergence of the algorithm is achieved without computation of the associated operator norms. Interesting numerical examples which illustrate the implementation and efficiency of our scheme are also given. Results obtained via this work improve and extend on previous results of its kind, in the literature.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0322\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0322","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用动态步长技术,在存在惯性项的情况下,提出了一种新的自适应cq算法,用于求解包含有限个极大单调集值算子的凸可行性问题和单调包含问题。为此,在一定的Banach空间中构造了一个收敛于右Bregman强非扩张映射不动点的算法,并同时解决了凸可行性和单调包含问题。该算法在不计算相关算子范数的情况下具有较强的收敛性。文中还给出了有趣的数值例子,说明了该方案的实现和有效性。通过这项工作获得的结果在文献中改进和扩展了以前的同类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new self-adaptive inertial CQ-algorithm for solving convex feasibility and monotone inclusion problems
Abstract Using a dynamical step size technique, a new self-adaptive CQ-algorithm is proposed in the presence of an inertial term to find the solution of convex feasibility problem and monotone inclusion problem involving a finite number of maximal monotone set valued operators. To do this, in certain Banach spaces, we construct an algorithm which converges to the fixed point of right Bregman strongly nonexpansive mappings and coincidentally solves the convex feasibility and monotone inclusion problems. Strong convergence of the algorithm is achieved without computation of the associated operator norms. Interesting numerical examples which illustrate the implementation and efficiency of our scheme are also given. Results obtained via this work improve and extend on previous results of its kind, in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信