Roxan Saleh , Hasan Fleyeh , Moudud Alam , Arend Hintze
{"title":"通过机器学习方法评估路标的颜色状态和日光色度","authors":"Roxan Saleh , Hasan Fleyeh , Moudud Alam , Arend Hintze","doi":"10.1016/j.iatssr.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>The color of road signs is a critical aspect of road safety, as it helps drivers quickly and accurately identify and respond to these signs. Properly colored road signs improve visibility during the day and make it easier for drivers to make informed decisions while driving. In order to ensure the safety and efficiency of road traffic, it is essential to maintain the appropriate color level of road signs.</p><p>The objective of this study was to analyze the color status and daylight chromaticity of in-use road signs using supervised machine learning models, and to explore the correlation between road sign's age and daylight chromaticity. Three algorithms were employed: Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). The data used in this study was collected from road signs that were in-use on roads in Sweden.</p><p>The study employed classification models to assess the color status (accepted or rejected) of the road signs based on minimum acceptable color levels according to standards, and regression models to predict the daylight chromaticity values. The correlation between road sign's age and daylight chromaticity was explored through regression analysis. Daylight chromaticity describes the color quality of road signs in daylight, that is expressed in terms of X and Y chromaticity coordinates.</p><p>The study revealed a linear relationship between the road sign's age and daylight chromaticity for blue, green, red, and white sheeting, but not for yellow. The lifespan of red signs was estimated to be around 12 years, much shorter than the estimated lifespans of yellow, green, blue, and white sheeting, which are 35, 42, 45, and 75 years, respectively.</p><p>The supervised machine learning models successfully assessed the color status of the road signs and predicted the daylight chromaticity values using the three algorithms. The results of this study showed that the ANN classification and ANN regression models achieved high accuracy of 81% and R<sup>2</sup> of 97%, respectively. The RF and SVM models also performed well, with accuracy values of 74% and 79% and R<sup>2</sup> ranging from 59% to 92%. The findings demonstrate the potential of machine learning to effectively predict the status and daylight chromaticity of road signs and their impact on road safety in the Swedish context.</p></div>","PeriodicalId":47059,"journal":{"name":"IATSS Research","volume":"47 3","pages":"Pages 305-317"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the color status and daylight chromaticity of road signs through machine learning approaches\",\"authors\":\"Roxan Saleh , Hasan Fleyeh , Moudud Alam , Arend Hintze\",\"doi\":\"10.1016/j.iatssr.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The color of road signs is a critical aspect of road safety, as it helps drivers quickly and accurately identify and respond to these signs. Properly colored road signs improve visibility during the day and make it easier for drivers to make informed decisions while driving. In order to ensure the safety and efficiency of road traffic, it is essential to maintain the appropriate color level of road signs.</p><p>The objective of this study was to analyze the color status and daylight chromaticity of in-use road signs using supervised machine learning models, and to explore the correlation between road sign's age and daylight chromaticity. Three algorithms were employed: Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). The data used in this study was collected from road signs that were in-use on roads in Sweden.</p><p>The study employed classification models to assess the color status (accepted or rejected) of the road signs based on minimum acceptable color levels according to standards, and regression models to predict the daylight chromaticity values. The correlation between road sign's age and daylight chromaticity was explored through regression analysis. Daylight chromaticity describes the color quality of road signs in daylight, that is expressed in terms of X and Y chromaticity coordinates.</p><p>The study revealed a linear relationship between the road sign's age and daylight chromaticity for blue, green, red, and white sheeting, but not for yellow. The lifespan of red signs was estimated to be around 12 years, much shorter than the estimated lifespans of yellow, green, blue, and white sheeting, which are 35, 42, 45, and 75 years, respectively.</p><p>The supervised machine learning models successfully assessed the color status of the road signs and predicted the daylight chromaticity values using the three algorithms. The results of this study showed that the ANN classification and ANN regression models achieved high accuracy of 81% and R<sup>2</sup> of 97%, respectively. The RF and SVM models also performed well, with accuracy values of 74% and 79% and R<sup>2</sup> ranging from 59% to 92%. The findings demonstrate the potential of machine learning to effectively predict the status and daylight chromaticity of road signs and their impact on road safety in the Swedish context.</p></div>\",\"PeriodicalId\":47059,\"journal\":{\"name\":\"IATSS Research\",\"volume\":\"47 3\",\"pages\":\"Pages 305-317\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IATSS Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0386111223000286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IATSS Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0386111223000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Assessing the color status and daylight chromaticity of road signs through machine learning approaches
The color of road signs is a critical aspect of road safety, as it helps drivers quickly and accurately identify and respond to these signs. Properly colored road signs improve visibility during the day and make it easier for drivers to make informed decisions while driving. In order to ensure the safety and efficiency of road traffic, it is essential to maintain the appropriate color level of road signs.
The objective of this study was to analyze the color status and daylight chromaticity of in-use road signs using supervised machine learning models, and to explore the correlation between road sign's age and daylight chromaticity. Three algorithms were employed: Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). The data used in this study was collected from road signs that were in-use on roads in Sweden.
The study employed classification models to assess the color status (accepted or rejected) of the road signs based on minimum acceptable color levels according to standards, and regression models to predict the daylight chromaticity values. The correlation between road sign's age and daylight chromaticity was explored through regression analysis. Daylight chromaticity describes the color quality of road signs in daylight, that is expressed in terms of X and Y chromaticity coordinates.
The study revealed a linear relationship between the road sign's age and daylight chromaticity for blue, green, red, and white sheeting, but not for yellow. The lifespan of red signs was estimated to be around 12 years, much shorter than the estimated lifespans of yellow, green, blue, and white sheeting, which are 35, 42, 45, and 75 years, respectively.
The supervised machine learning models successfully assessed the color status of the road signs and predicted the daylight chromaticity values using the three algorithms. The results of this study showed that the ANN classification and ANN regression models achieved high accuracy of 81% and R2 of 97%, respectively. The RF and SVM models also performed well, with accuracy values of 74% and 79% and R2 ranging from 59% to 92%. The findings demonstrate the potential of machine learning to effectively predict the status and daylight chromaticity of road signs and their impact on road safety in the Swedish context.
期刊介绍:
First published in 1977 as an international journal sponsored by the International Association of Traffic and Safety Sciences, IATSS Research has contributed to the dissemination of interdisciplinary wisdom on ideal mobility, particularly in Asia. IATSS Research is an international refereed journal providing a platform for the exchange of scientific findings on transportation and safety across a wide range of academic fields, with particular emphasis on the links between scientific findings and practice in society and cultural contexts. IATSS Research welcomes submission of original research articles and reviews that satisfy the following conditions: 1.Relevant to transportation and safety, and the multiple impacts of transportation systems on security, human health, and the environment. 2.Contains important policy and practical implications based on scientific evidence in the applicable academic field. In addition to welcoming general submissions, IATSS Research occasionally plans and publishes special feature sections and special issues composed of invited articles addressing specific topics.