模群的φ -同余子群族

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-08-13 DOI:10.1112/mtk.12218
Angelica Babei, Andrew Fiori, Cameron Franc
{"title":"模群的φ -同余子群族","authors":"Angelica Babei, Andrew Fiori, Cameron Franc","doi":"10.1112/mtk.12218","DOIUrl":null,"url":null,"abstract":"We introduce and study families of finite index subgroups of the modular group that generalize the congruence subgroups. Such groups, termed ϕ‐congruence subgroups, are obtained by reducing homomorphisms ϕ from the modular group into a linear algebraic group modulo integers. In particular, we examine two families of examples, arising on the one hand from a map into a quasi‐unipotent group, and on the other hand from maps into symplectic groups of degree four. In the quasi‐unipotent case, we also provide a detailed discussion of the corresponding modular forms, using the fact that the tower of curves in this case contains the tower of isogenies over the elliptic curve y2=x3−1728$y^2=x^3-1728$ defined by the commutator subgroup of the modular group.","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12218","citationCount":"0","resultStr":"{\"title\":\"Families of ϕ-congruence subgroups of the modular group\",\"authors\":\"Angelica Babei, Andrew Fiori, Cameron Franc\",\"doi\":\"10.1112/mtk.12218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study families of finite index subgroups of the modular group that generalize the congruence subgroups. Such groups, termed ϕ‐congruence subgroups, are obtained by reducing homomorphisms ϕ from the modular group into a linear algebraic group modulo integers. In particular, we examine two families of examples, arising on the one hand from a map into a quasi‐unipotent group, and on the other hand from maps into symplectic groups of degree four. In the quasi‐unipotent case, we also provide a detailed discussion of the corresponding modular forms, using the fact that the tower of curves in this case contains the tower of isogenies over the elliptic curve y2=x3−1728$y^2=x^3-1728$ defined by the commutator subgroup of the modular group.\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12218\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12218\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12218","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入并研究了推广同余子群的模群的有限索引子群族。通过将模群的同态φ约化为模整数,得到了这样的群,称为φ -同余子群。特别地,我们研究了两类例子,一方面是由映射到拟单能群,另一方面是由映射到四次辛群。在拟单幂的情况下,我们还详细讨论了相应的模形式,利用这种情况下的曲线塔包含由模群的换向子群定义的椭圆曲线上的等同性塔这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Families of ϕ-congruence subgroups of the modular group

Families of ϕ-congruence subgroups of the modular group
We introduce and study families of finite index subgroups of the modular group that generalize the congruence subgroups. Such groups, termed ϕ‐congruence subgroups, are obtained by reducing homomorphisms ϕ from the modular group into a linear algebraic group modulo integers. In particular, we examine two families of examples, arising on the one hand from a map into a quasi‐unipotent group, and on the other hand from maps into symplectic groups of degree four. In the quasi‐unipotent case, we also provide a detailed discussion of the corresponding modular forms, using the fact that the tower of curves in this case contains the tower of isogenies over the elliptic curve y2=x3−1728$y^2=x^3-1728$ defined by the commutator subgroup of the modular group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信