置换与[1,n]的除数图

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2022-12-02 DOI:10.1112/mtk.12177
Nathan McNew
{"title":"置换与[1,n]的除数图","authors":"Nathan McNew","doi":"10.1112/mtk.12177","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>div</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$S_{\\rm div}(n)$</annotation>\n </semantics></math> denote the set of permutations π of <i>n</i> such that for each <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>j</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1\\leqslant j \\leqslant n$</annotation>\n </semantics></math> either <math>\n <semantics>\n <mrow>\n <mi>j</mi>\n <mo>∣</mo>\n <mi>π</mi>\n <mo>(</mo>\n <mi>j</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$j \\mid \\pi (j)$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mo>(</mo>\n <mi>j</mi>\n <mo>)</mo>\n <mo>∣</mo>\n <mi>j</mi>\n </mrow>\n <annotation>$\\pi (j) \\mid j$</annotation>\n </semantics></math>. These permutations can also be viewed as vertex-disjoint directed cycle covers of the divisor graph <math>\n <semantics>\n <msub>\n <mi>D</mi>\n <mrow>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>]</mo>\n </mrow>\n </msub>\n <annotation>$\\mathcal {D}_{[1,n]}$</annotation>\n </semantics></math> on vertices <math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>v</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$v_1, \\ldots , v_n$</annotation>\n </semantics></math> with an edge between <math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mi>i</mi>\n </msub>\n <annotation>$v_i$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mi>j</mi>\n </msub>\n <annotation>$v_j$</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>∣</mo>\n <mi>j</mi>\n </mrow>\n <annotation>$i\\mid j$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <mi>j</mi>\n <mo>∣</mo>\n <mi>i</mi>\n </mrow>\n <annotation>$j \\mid i$</annotation>\n </semantics></math>. We improve on recent results of Pomerance by showing <math>\n <semantics>\n <mrow>\n <msub>\n <mi>c</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>#</mo>\n <msub>\n <mi>S</mi>\n <mi>div</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$c_d = \\lim _{n \\rightarrow \\infty }(\\# S_{\\rm div}(n))^{1/n}$</annotation>\n </semantics></math> exists and that <math>\n <semantics>\n <mrow>\n <mn>2.069</mn>\n <mo>&lt;</mo>\n <msub>\n <mi>c</mi>\n <mi>d</mi>\n </msub>\n <mo>&lt;</mo>\n <mn>2.694</mn>\n </mrow>\n <annotation>$2.069&lt;c_d&lt;2.694$</annotation>\n </semantics></math>. We also obtain similar results for the set <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>lcm</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$S_{\\rm lcm}(n)$</annotation>\n </semantics></math> of permutations where <math>\n <semantics>\n <mrow>\n <mo>lcm</mo>\n <mo>(</mo>\n <mi>j</mi>\n <mo>,</mo>\n <mi>π</mi>\n <mo>(</mo>\n <mi>j</mi>\n <mo>)</mo>\n <mo>)</mo>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$\\operatorname{lcm}(j,\\pi (j))\\leqslant n$</annotation>\n </semantics></math> for all <i>j</i>. The results rely on a graph theoretic result bounding the number of vertex-disjoint directed cycle covers, which may be of independent interest.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permutations and the divisor graph of [1, n]\",\"authors\":\"Nathan McNew\",\"doi\":\"10.1112/mtk.12177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>div</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$S_{\\\\rm div}(n)$</annotation>\\n </semantics></math> denote the set of permutations π of <i>n</i> such that for each <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>j</mi>\\n <mo>⩽</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$1\\\\leqslant j \\\\leqslant n$</annotation>\\n </semantics></math> either <math>\\n <semantics>\\n <mrow>\\n <mi>j</mi>\\n <mo>∣</mo>\\n <mi>π</mi>\\n <mo>(</mo>\\n <mi>j</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$j \\\\mid \\\\pi (j)$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n <mo>(</mo>\\n <mi>j</mi>\\n <mo>)</mo>\\n <mo>∣</mo>\\n <mi>j</mi>\\n </mrow>\\n <annotation>$\\\\pi (j) \\\\mid j$</annotation>\\n </semantics></math>. These permutations can also be viewed as vertex-disjoint directed cycle covers of the divisor graph <math>\\n <semantics>\\n <msub>\\n <mi>D</mi>\\n <mrow>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>]</mo>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {D}_{[1,n]}$</annotation>\\n </semantics></math> on vertices <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>v</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>v</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$v_1, \\\\ldots , v_n$</annotation>\\n </semantics></math> with an edge between <math>\\n <semantics>\\n <msub>\\n <mi>v</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$v_i$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <msub>\\n <mi>v</mi>\\n <mi>j</mi>\\n </msub>\\n <annotation>$v_j$</annotation>\\n </semantics></math> if <math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n <mo>∣</mo>\\n <mi>j</mi>\\n </mrow>\\n <annotation>$i\\\\mid j$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <mi>j</mi>\\n <mo>∣</mo>\\n <mi>i</mi>\\n </mrow>\\n <annotation>$j \\\\mid i$</annotation>\\n </semantics></math>. We improve on recent results of Pomerance by showing <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>c</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>#</mo>\\n <msub>\\n <mi>S</mi>\\n <mi>div</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$c_d = \\\\lim _{n \\\\rightarrow \\\\infty }(\\\\# S_{\\\\rm div}(n))^{1/n}$</annotation>\\n </semantics></math> exists and that <math>\\n <semantics>\\n <mrow>\\n <mn>2.069</mn>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>c</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>&lt;</mo>\\n <mn>2.694</mn>\\n </mrow>\\n <annotation>$2.069&lt;c_d&lt;2.694$</annotation>\\n </semantics></math>. We also obtain similar results for the set <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>lcm</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$S_{\\\\rm lcm}(n)$</annotation>\\n </semantics></math> of permutations where <math>\\n <semantics>\\n <mrow>\\n <mo>lcm</mo>\\n <mo>(</mo>\\n <mi>j</mi>\\n <mo>,</mo>\\n <mi>π</mi>\\n <mo>(</mo>\\n <mi>j</mi>\\n <mo>)</mo>\\n <mo>)</mo>\\n <mo>⩽</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$\\\\operatorname{lcm}(j,\\\\pi (j))\\\\leqslant n$</annotation>\\n </semantics></math> for all <i>j</i>. The results rely on a graph theoretic result bounding the number of vertex-disjoint directed cycle covers, which may be of independent interest.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12177\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Sdiv(n)$S_{\rm-div}(n)$表示n的置换π的集合,使得对于每一个1⩽j \10877 n$1\leqslant j\leqslant n$,要么是jŞπ(j)$j\mid\pi(j)$,要么就是π(j。这些置换也可以看作除数图D[1,n]$\mathcal的顶点不相交有向循环覆盖{D}_{[1,n]}$在顶点v1,…,vn$v_1,\ldots,v_n$上,边在vi$v_i$和vj$v_j$之间,如果iÜj$i\mid-j$或jÜi$j\midi$。我们通过显示cd=limn改进了Pomerance最近的结果→∞(#Sdiv(n))1/n$c_d=\lim _{n\rightarrow\infty}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permutations and the divisor graph of [1, n]

Let S div ( n ) $S_{\rm div}(n)$ denote the set of permutations π of n such that for each 1 j n $1\leqslant j \leqslant n$ either j π ( j ) $j \mid \pi (j)$ or π ( j ) j $\pi (j) \mid j$ . These permutations can also be viewed as vertex-disjoint directed cycle covers of the divisor graph D [ 1 , n ] $\mathcal {D}_{[1,n]}$ on vertices v 1 , , v n $v_1, \ldots , v_n$ with an edge between v i $v_i$ and v j $v_j$ if i j $i\mid j$ or j i $j \mid i$ . We improve on recent results of Pomerance by showing c d = lim n ( # S div ( n ) ) 1 / n $c_d = \lim _{n \rightarrow \infty }(\# S_{\rm div}(n))^{1/n}$ exists and that 2.069 < c d < 2.694 $2.069<c_d<2.694$ . We also obtain similar results for the set S lcm ( n ) $S_{\rm lcm}(n)$ of permutations where lcm ( j , π ( j ) ) n $\operatorname{lcm}(j,\pi (j))\leqslant n$ for all j. The results rely on a graph theoretic result bounding the number of vertex-disjoint directed cycle covers, which may be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信