黄瓜对白粉菌的抗性机制

IF 1.9 3区 农林科学 Q2 AGRONOMY
Mumin Ibrahim Tek, O. Calis
{"title":"黄瓜对白粉菌的抗性机制","authors":"Mumin Ibrahim Tek, O. Calis","doi":"10.36253/phyto-13313","DOIUrl":null,"url":null,"abstract":"Podosphaera xanthii causes powdery mildew of cucumber, and is associated with significant yield and quality losses. Development of resistant or tolerant varieties is the most effective and eco-friendly strategy for powdery mildew management. An important host resistance mechanism is based on the recognition of conserved resistance genes, resulting in durable resistance. To determine powdery mildew resistance mechanisms in cucumber, total RNAs were isolated from the powdery mildew resistant cultivar Meltem, the tolerant line VT18, and the susceptible local variety Camlica. Expression levels of nine genes in these plants were analysed by Reverse Transcription Polymerase Chain Reaction (RT-PCR). The host reactions were assessed using microscope observations of stained specimens. Serine/threonine (STN7), transcription factor (WRKY22), serine/threonine-protein kinase (D6PKL1), and serine/threonine receptor kinase (NFP) genes were induced, as positive regulators in defence mechanisms against powdery mildew. Polygalacturonase Inhibitor (PGIP) did not express after P. xanthii inoculation of Camlica, resulting in susceptibility. After inoculation, callose synthase (CALLOSE) and cinnamyl alcohol dehydrogenase (CAD) gene expression levels were increased in resistant Meltem, but Hypersensitive Reaction (HR) and ROS formation were only linked in the tolerant VT18. Powdery mildew development was less in Meltem than in VT18, indicating that cell wall thickening and HR play separate roles in resistance to this disease.","PeriodicalId":20165,"journal":{"name":"Phytopathologia Mediterranea","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanisms of resistance to powdery mildew in cucumber\",\"authors\":\"Mumin Ibrahim Tek, O. Calis\",\"doi\":\"10.36253/phyto-13313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Podosphaera xanthii causes powdery mildew of cucumber, and is associated with significant yield and quality losses. Development of resistant or tolerant varieties is the most effective and eco-friendly strategy for powdery mildew management. An important host resistance mechanism is based on the recognition of conserved resistance genes, resulting in durable resistance. To determine powdery mildew resistance mechanisms in cucumber, total RNAs were isolated from the powdery mildew resistant cultivar Meltem, the tolerant line VT18, and the susceptible local variety Camlica. Expression levels of nine genes in these plants were analysed by Reverse Transcription Polymerase Chain Reaction (RT-PCR). The host reactions were assessed using microscope observations of stained specimens. Serine/threonine (STN7), transcription factor (WRKY22), serine/threonine-protein kinase (D6PKL1), and serine/threonine receptor kinase (NFP) genes were induced, as positive regulators in defence mechanisms against powdery mildew. Polygalacturonase Inhibitor (PGIP) did not express after P. xanthii inoculation of Camlica, resulting in susceptibility. After inoculation, callose synthase (CALLOSE) and cinnamyl alcohol dehydrogenase (CAD) gene expression levels were increased in resistant Meltem, but Hypersensitive Reaction (HR) and ROS formation were only linked in the tolerant VT18. Powdery mildew development was less in Meltem than in VT18, indicating that cell wall thickening and HR play separate roles in resistance to this disease.\",\"PeriodicalId\":20165,\"journal\":{\"name\":\"Phytopathologia Mediterranea\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathologia Mediterranea\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.36253/phyto-13313\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathologia Mediterranea","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.36253/phyto-13313","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

摘要

黄球菌引起黄瓜的白粉病,并与显著的产量和质量损失有关。开发抗性或耐受性品种是防治白粉菌最有效、最环保的策略。一个重要的宿主抗性机制是基于对保守抗性基因的识别,从而产生持久的抗性。为了确定黄瓜的抗白粉菌机制,从抗白粉病品种Meltem、耐白粉病品系VT18和感病地方品种Camlica中分离出总RNA。通过逆转录聚合酶链式反应(RT-PCR)分析了9个基因在这些植物中的表达水平。使用染色标本的显微镜观察来评估宿主反应。丝氨酸/苏氨酸(STN7)、转录因子(WRKY22)、丝氨酸/苏苏氨酸蛋白激酶(D6PKL1)和丝氨酸/苏氨酸受体激酶(NFP)基因被诱导,作为防御白粉菌机制的正调控因子。多聚半乳糖醛酸酶抑制剂(PGIP)在黄曲霉接种Camlica后不表达,导致易感性。接种后,愈伤组织合成酶(callose)和肉桂醇脱氢酶(CAD)基因在抗性Meltem中的表达水平增加,但超敏反应(HR)和ROS的形成仅在抗性VT18中相关。与VT18相比,Meltem中的白粉病发生较少,这表明细胞壁增厚和HR在对该疾病的抗性中起着不同的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms of resistance to powdery mildew in cucumber
Podosphaera xanthii causes powdery mildew of cucumber, and is associated with significant yield and quality losses. Development of resistant or tolerant varieties is the most effective and eco-friendly strategy for powdery mildew management. An important host resistance mechanism is based on the recognition of conserved resistance genes, resulting in durable resistance. To determine powdery mildew resistance mechanisms in cucumber, total RNAs were isolated from the powdery mildew resistant cultivar Meltem, the tolerant line VT18, and the susceptible local variety Camlica. Expression levels of nine genes in these plants were analysed by Reverse Transcription Polymerase Chain Reaction (RT-PCR). The host reactions were assessed using microscope observations of stained specimens. Serine/threonine (STN7), transcription factor (WRKY22), serine/threonine-protein kinase (D6PKL1), and serine/threonine receptor kinase (NFP) genes were induced, as positive regulators in defence mechanisms against powdery mildew. Polygalacturonase Inhibitor (PGIP) did not express after P. xanthii inoculation of Camlica, resulting in susceptibility. After inoculation, callose synthase (CALLOSE) and cinnamyl alcohol dehydrogenase (CAD) gene expression levels were increased in resistant Meltem, but Hypersensitive Reaction (HR) and ROS formation were only linked in the tolerant VT18. Powdery mildew development was less in Meltem than in VT18, indicating that cell wall thickening and HR play separate roles in resistance to this disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathologia Mediterranea
Phytopathologia Mediterranea 生物-植物科学
CiteScore
4.40
自引率
8.30%
发文量
28
审稿时长
6-12 weeks
期刊介绍: Phytopathologia Mediterranea is an international journal edited by the Mediterranean Phytopathological Union. The journal’s mission is the promotion of plant health for Mediterranean crops, climate and regions, safe food production, and the transfer of new knowledge on plant diseases and their sustainable management. The journal deals with all areas of plant pathology, including etiology, epidemiology, disease control, biochemical and physiological aspects, and utilization of molecular technologies. All types of plant pathogens are covered, including fungi, oomycetes, nematodes, protozoa, bacteria, phytoplasmas, viruses, and viroids. The journal also gives a special attention to research on mycotoxins, biological and integrated management of plant diseases, and the use of natural substances in disease and weed control. The journal focuses on pathology of Mediterranean crops grown throughout the world. The Editorial Board of Phytopathologia Mediterranea has recently been reorganised, under two Editors-in-Chief and with an increased number of editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信