{"title":"高强高能法提高合金钢机械零件氮化层耐磨性","authors":"N. K. Krioni, A. A. Mingazheva, A. D. Mingazhev","doi":"10.3103/S1068366622060083","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>This article discusses the experimental results of wear resistance of machine parts made of alloyed steels, with nitrided layers, with structures formed with and without nitride mesh. It has been demonstrated that the nitrided layers with traditional structure under certain conditions of friction and wear do not completely exhibit their potentials of wear resistance as a consequence of disintegration of their fragments due to weakened intergranular boundaries in nitrided layer resulting from their oversaturation with nitrogen. The models of formation of structures of nitrided layers are schematically illustrated including their behavior during friction and wear. It has been mentioned that the use of high energy ion implantation at an ion energy of about 18–26 keV due to the occurrence of the long-range effect provides formation of radiation defects of a crystalline structure at a depth comparable with the thickness of a nitrided layer allowing it to significantly intensify nitrogen diffusion as well as to block grain boundaries, which inhibit diffusion processes in them. It has been determined that while intensive plastic deformation of the surface layer improves diffusion intensity, still, it can be efficiently applied only in combination with high energy ion implantation. The results of comparative wear tests are exemplified by screw pump rotors operating under conditions of intensive friction wear. It has been demonstrated that the absence of nitride mesh in a nitrided layer improves wear resistance of the nitrided layer by about 3–4 times.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"43 6","pages":"398 - 403"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Wear Resistance of a Nitrided Layer of Machine Parts Made of Alloyed Steels by High Intensity and High Energy Methods\",\"authors\":\"N. K. Krioni, A. A. Mingazheva, A. D. Mingazhev\",\"doi\":\"10.3103/S1068366622060083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><h3>\\n <b>Abstract</b>—</h3><p>This article discusses the experimental results of wear resistance of machine parts made of alloyed steels, with nitrided layers, with structures formed with and without nitride mesh. It has been demonstrated that the nitrided layers with traditional structure under certain conditions of friction and wear do not completely exhibit their potentials of wear resistance as a consequence of disintegration of their fragments due to weakened intergranular boundaries in nitrided layer resulting from their oversaturation with nitrogen. The models of formation of structures of nitrided layers are schematically illustrated including their behavior during friction and wear. It has been mentioned that the use of high energy ion implantation at an ion energy of about 18–26 keV due to the occurrence of the long-range effect provides formation of radiation defects of a crystalline structure at a depth comparable with the thickness of a nitrided layer allowing it to significantly intensify nitrogen diffusion as well as to block grain boundaries, which inhibit diffusion processes in them. It has been determined that while intensive plastic deformation of the surface layer improves diffusion intensity, still, it can be efficiently applied only in combination with high energy ion implantation. The results of comparative wear tests are exemplified by screw pump rotors operating under conditions of intensive friction wear. It has been demonstrated that the absence of nitride mesh in a nitrided layer improves wear resistance of the nitrided layer by about 3–4 times.</p></div></div>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":\"43 6\",\"pages\":\"398 - 403\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366622060083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366622060083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Improvement of Wear Resistance of a Nitrided Layer of Machine Parts Made of Alloyed Steels by High Intensity and High Energy Methods
Abstract—
This article discusses the experimental results of wear resistance of machine parts made of alloyed steels, with nitrided layers, with structures formed with and without nitride mesh. It has been demonstrated that the nitrided layers with traditional structure under certain conditions of friction and wear do not completely exhibit their potentials of wear resistance as a consequence of disintegration of their fragments due to weakened intergranular boundaries in nitrided layer resulting from their oversaturation with nitrogen. The models of formation of structures of nitrided layers are schematically illustrated including their behavior during friction and wear. It has been mentioned that the use of high energy ion implantation at an ion energy of about 18–26 keV due to the occurrence of the long-range effect provides formation of radiation defects of a crystalline structure at a depth comparable with the thickness of a nitrided layer allowing it to significantly intensify nitrogen diffusion as well as to block grain boundaries, which inhibit diffusion processes in them. It has been determined that while intensive plastic deformation of the surface layer improves diffusion intensity, still, it can be efficiently applied only in combination with high energy ion implantation. The results of comparative wear tests are exemplified by screw pump rotors operating under conditions of intensive friction wear. It has been demonstrated that the absence of nitride mesh in a nitrided layer improves wear resistance of the nitrided layer by about 3–4 times.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.