考虑横向循环荷载的大直径单桩基础土-基础-结构相互作用评价

IF 2.8 3区 地球科学 Q1 ENGINEERING, MARINE
Jae Hyun Kim, Y. Jeong, J. Ha, Heon-Joon Park
{"title":"考虑横向循环荷载的大直径单桩基础土-基础-结构相互作用评价","authors":"Jae Hyun Kim, Y. Jeong, J. Ha, Heon-Joon Park","doi":"10.3390/jmse11071303","DOIUrl":null,"url":null,"abstract":"In this study, the monotonic and cyclic behavior of an offshore wind turbine with a monopile foundation installed in a sand layer were evaluated in the centrifuge. A simplified offshore wind turbine was modeled, and the lateral load was applied to the tower under displacement control. The monotonic loading test evaluated ultimate lateral load capacity and bending moment profiles under different loading levels. During cyclic loading, variations of moment-rotation responses, cyclic stiffness, and bending moments along the pile were observed. The initial rotational stiffness of the monopile decreased as the loading level increased. In the fatigue limit state (FLS) and service limit state (SLS) loading conditions, no noticeable variation in stiffness was observed with the number of cycles. However, in the ultimate limit state (ULS), the stiffness of the monopile increased during the first few cycles, followed by a decreasing rate of increase, and reached a certain value. The loading rate had a weakening effect on the monopile–soil interaction, which was supported by the bending moments induced in the monopile.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Soil–Foundation–Structure Interaction for Large Diameter Monopile Foundation Focusing on Lateral Cyclic Loading\",\"authors\":\"Jae Hyun Kim, Y. Jeong, J. Ha, Heon-Joon Park\",\"doi\":\"10.3390/jmse11071303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the monotonic and cyclic behavior of an offshore wind turbine with a monopile foundation installed in a sand layer were evaluated in the centrifuge. A simplified offshore wind turbine was modeled, and the lateral load was applied to the tower under displacement control. The monotonic loading test evaluated ultimate lateral load capacity and bending moment profiles under different loading levels. During cyclic loading, variations of moment-rotation responses, cyclic stiffness, and bending moments along the pile were observed. The initial rotational stiffness of the monopile decreased as the loading level increased. In the fatigue limit state (FLS) and service limit state (SLS) loading conditions, no noticeable variation in stiffness was observed with the number of cycles. However, in the ultimate limit state (ULS), the stiffness of the monopile increased during the first few cycles, followed by a decreasing rate of increase, and reached a certain value. The loading rate had a weakening effect on the monopile–soil interaction, which was supported by the bending moments induced in the monopile.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse11071303\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse11071303","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

摘要

在离心机中,对安装在砂土层中的单桩基础海上风力机的单调和循环特性进行了评估。建立了简化的海上风力机模型,在位移控制下对塔体施加横向荷载。单调加载试验评估了不同荷载水平下的极限侧载能力和弯矩曲线。在循环加载过程中,观察了弯矩-转动响应、循环刚度和弯矩沿桩的变化。随着加载水平的增加,单桩的初始转动刚度减小。在疲劳极限状态(FLS)和使用极限状态(SLS)加载条件下,刚度随循环次数的变化不明显。而在极限状态下,单桩刚度在前几次循环中增加,随后增加速率减小,并达到一定值。加载速率对单桩-土相互作用的影响减弱,单桩内部产生的弯矩支持了单桩-土相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Soil–Foundation–Structure Interaction for Large Diameter Monopile Foundation Focusing on Lateral Cyclic Loading
In this study, the monotonic and cyclic behavior of an offshore wind turbine with a monopile foundation installed in a sand layer were evaluated in the centrifuge. A simplified offshore wind turbine was modeled, and the lateral load was applied to the tower under displacement control. The monotonic loading test evaluated ultimate lateral load capacity and bending moment profiles under different loading levels. During cyclic loading, variations of moment-rotation responses, cyclic stiffness, and bending moments along the pile were observed. The initial rotational stiffness of the monopile decreased as the loading level increased. In the fatigue limit state (FLS) and service limit state (SLS) loading conditions, no noticeable variation in stiffness was observed with the number of cycles. However, in the ultimate limit state (ULS), the stiffness of the monopile increased during the first few cycles, followed by a decreasing rate of increase, and reached a certain value. The loading rate had a weakening effect on the monopile–soil interaction, which was supported by the bending moments induced in the monopile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Marine Science and Engineering
Journal of Marine Science and Engineering Engineering-Ocean Engineering
CiteScore
4.40
自引率
20.70%
发文量
1640
审稿时长
18.09 days
期刊介绍: Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信