智能手机支持的微塑料快速定量

IF 6.6 Q1 ENGINEERING, ENVIRONMENTAL
Jamie Leonard , Hatice Ceylan Koydemir , Vera S. Koutnik , Derek Tseng , Aydogan Ozcan , Sanjay K Mohanty
{"title":"智能手机支持的微塑料快速定量","authors":"Jamie Leonard ,&nbsp;Hatice Ceylan Koydemir ,&nbsp;Vera S. Koutnik ,&nbsp;Derek Tseng ,&nbsp;Aydogan Ozcan ,&nbsp;Sanjay K Mohanty","doi":"10.1016/j.hazl.2022.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Developing methods to quickly detect microplastics is critical to assessing the extent of microplastic contamination in the environment. However, current methods to quantify microplastics from environmental samples can take several hours to days and often require access to expensive specialized microscopy instruments. Herein we report a smartphone-based method to rapidly quantify microplastics. The method involves isolating microplastics from soil or water by density separation and vacuum filtration, staining the isolated plastic polymers with Nile Red, and quantifying the strained microplastics as small as 10 µm using a smartphone-based fluorescence microscope with an opti-mechanical attachment. The smartphone-enabled quantification using an algorithm eliminates time-consuming digestion steps and manual counting, thereby enabling quantification of microplastic concentration in environmental samples within 1 h. The method successfully detected a wide range of plastic polymers, but a dilution step was often needed if the samples contained high concentrations of particulates or non-plastic debris to minimize optical overlap or blocking. This method could serve as an initial assessment tool to rapidly quantify microplastics in environments in remote places with limited access to expensive resources and open the possibility to increase the frequency of monitoring microplastic concentration in engineered systems such as wastewater treatment plants.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666911022000053/pdfft?md5=93fdb20c2459e2530808de497c75bb47&pid=1-s2.0-S2666911022000053-main.pdf","citationCount":"10","resultStr":"{\"title\":\"Smartphone-enabled rapid quantification of microplastics\",\"authors\":\"Jamie Leonard ,&nbsp;Hatice Ceylan Koydemir ,&nbsp;Vera S. Koutnik ,&nbsp;Derek Tseng ,&nbsp;Aydogan Ozcan ,&nbsp;Sanjay K Mohanty\",\"doi\":\"10.1016/j.hazl.2022.100052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing methods to quickly detect microplastics is critical to assessing the extent of microplastic contamination in the environment. However, current methods to quantify microplastics from environmental samples can take several hours to days and often require access to expensive specialized microscopy instruments. Herein we report a smartphone-based method to rapidly quantify microplastics. The method involves isolating microplastics from soil or water by density separation and vacuum filtration, staining the isolated plastic polymers with Nile Red, and quantifying the strained microplastics as small as 10 µm using a smartphone-based fluorescence microscope with an opti-mechanical attachment. The smartphone-enabled quantification using an algorithm eliminates time-consuming digestion steps and manual counting, thereby enabling quantification of microplastic concentration in environmental samples within 1 h. The method successfully detected a wide range of plastic polymers, but a dilution step was often needed if the samples contained high concentrations of particulates or non-plastic debris to minimize optical overlap or blocking. This method could serve as an initial assessment tool to rapidly quantify microplastics in environments in remote places with limited access to expensive resources and open the possibility to increase the frequency of monitoring microplastic concentration in engineered systems such as wastewater treatment plants.</p></div>\",\"PeriodicalId\":93463,\"journal\":{\"name\":\"Journal of hazardous materials letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666911022000053/pdfft?md5=93fdb20c2459e2530808de497c75bb47&pid=1-s2.0-S2666911022000053-main.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666911022000053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911022000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 10

摘要

开发快速检测微塑料的方法对于评估环境中微塑料污染的程度至关重要。然而,目前从环境样本中量化微塑料的方法可能需要几个小时到几天的时间,而且往往需要使用昂贵的专业显微镜仪器。在这里,我们报告了一种基于智能手机的方法来快速量化微塑料。该方法包括通过密度分离和真空过滤从土壤或水中分离微塑料,用尼罗河红对分离的塑料聚合物进行染色,并使用带有光学机械附件的基于智能手机的荧光显微镜对小至10微米的拉伸微塑料进行定量。使用算法的智能手机支持的定量消除了耗时的消化步骤和人工计数,从而能够在1小时内对环境样品中的微塑料浓度进行定量。该方法成功检测了各种塑料聚合物,但如果样品含有高浓度的颗粒或非塑料碎片,则通常需要稀释步骤,以尽量减少光学重叠或阻塞。这种方法可以作为一种初步评估工具,在偏远地区的环境中快速量化微塑料,这些环境无法获得昂贵的资源,并有可能增加对污水处理厂等工程系统中微塑料浓度的监测频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smartphone-enabled rapid quantification of microplastics

Developing methods to quickly detect microplastics is critical to assessing the extent of microplastic contamination in the environment. However, current methods to quantify microplastics from environmental samples can take several hours to days and often require access to expensive specialized microscopy instruments. Herein we report a smartphone-based method to rapidly quantify microplastics. The method involves isolating microplastics from soil or water by density separation and vacuum filtration, staining the isolated plastic polymers with Nile Red, and quantifying the strained microplastics as small as 10 µm using a smartphone-based fluorescence microscope with an opti-mechanical attachment. The smartphone-enabled quantification using an algorithm eliminates time-consuming digestion steps and manual counting, thereby enabling quantification of microplastic concentration in environmental samples within 1 h. The method successfully detected a wide range of plastic polymers, but a dilution step was often needed if the samples contained high concentrations of particulates or non-plastic debris to minimize optical overlap or blocking. This method could serve as an initial assessment tool to rapidly quantify microplastics in environments in remote places with limited access to expensive resources and open the possibility to increase the frequency of monitoring microplastic concentration in engineered systems such as wastewater treatment plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of hazardous materials letters
Journal of hazardous materials letters Pollution, Health, Toxicology and Mutagenesis, Environmental Chemistry, Waste Management and Disposal, Environmental Engineering
CiteScore
10.30
自引率
0.00%
发文量
0
审稿时长
20 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信