Mooney-Rivlin棒中振动的非线性声波

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY
A. Karakozova, Sergey Kuznetsov
{"title":"Mooney-Rivlin棒中振动的非线性声波","authors":"A. Karakozova, Sergey Kuznetsov","doi":"10.3390/app131810037","DOIUrl":null,"url":null,"abstract":"Harmonic wave excitation in a semi-infinite incompressible hyperelastic 1D rod with the Mooney–Rivlin equation of state reveals the formation and propagation of the shock wave fronts arising between faster and slower moving parts of the initially harmonic wave. The observed shock wave fronts result in the collapse of the slower moving parts being absorbed by the faster parts; hence, to the attenuation of the kinetic and the elastic strain energy with the corresponding heat generation. Both geometrically and physically nonlinear equations of motion are solved by the explicit Lax–Wendroff numerical tine-integration scheme combined with the finite element approach for spatial discretization.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillating Nonlinear Acoustic Waves in a Mooney–Rivlin Rod\",\"authors\":\"A. Karakozova, Sergey Kuznetsov\",\"doi\":\"10.3390/app131810037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harmonic wave excitation in a semi-infinite incompressible hyperelastic 1D rod with the Mooney–Rivlin equation of state reveals the formation and propagation of the shock wave fronts arising between faster and slower moving parts of the initially harmonic wave. The observed shock wave fronts result in the collapse of the slower moving parts being absorbed by the faster parts; hence, to the attenuation of the kinetic and the elastic strain energy with the corresponding heat generation. Both geometrically and physically nonlinear equations of motion are solved by the explicit Lax–Wendroff numerical tine-integration scheme combined with the finite element approach for spatial discretization.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810037\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810037","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于Mooney-Rivlin状态方程的半无限不可压缩超弹性一维棒中的谐波激发揭示了在初始谐波的快、慢运动部分之间产生的激波锋面的形成和传播。观测到的激波锋面导致运动较慢的部分坍塌,被运动较快的部分吸收;因此,随着相应的热生成,动能和弹性应变能的衰减。采用显式Lax-Wendroff数值时间积分格式结合空间离散化有限元方法求解几何和物理非线性运动方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillating Nonlinear Acoustic Waves in a Mooney–Rivlin Rod
Harmonic wave excitation in a semi-infinite incompressible hyperelastic 1D rod with the Mooney–Rivlin equation of state reveals the formation and propagation of the shock wave fronts arising between faster and slower moving parts of the initially harmonic wave. The observed shock wave fronts result in the collapse of the slower moving parts being absorbed by the faster parts; hence, to the attenuation of the kinetic and the elastic strain energy with the corresponding heat generation. Both geometrically and physically nonlinear equations of motion are solved by the explicit Lax–Wendroff numerical tine-integration scheme combined with the finite element approach for spatial discretization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信