Patrick J. Fleming, John J. Correia, Karen G. Fleming
{"title":"HullRadSAS重述大分子水合作用","authors":"Patrick J. Fleming, John J. Correia, Karen G. Fleming","doi":"10.1007/s00249-022-01627-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types of hydration helps to explain the “hydration problem” in hydrodynamics. The combination of these two types of hydration allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and diffusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity experiments.\n</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"215 - 224"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-022-01627-8.pdf","citationCount":"11","resultStr":"{\"title\":\"Revisiting macromolecular hydration with HullRadSAS\",\"authors\":\"Patrick J. Fleming, John J. Correia, Karen G. Fleming\",\"doi\":\"10.1007/s00249-022-01627-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types of hydration helps to explain the “hydration problem” in hydrodynamics. The combination of these two types of hydration allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and diffusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity experiments.\\n</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 4-5\",\"pages\":\"215 - 224\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00249-022-01627-8.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-022-01627-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-022-01627-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Revisiting macromolecular hydration with HullRadSAS
Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types of hydration helps to explain the “hydration problem” in hydrodynamics. The combination of these two types of hydration allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and diffusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity experiments.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.