{"title":"基于坐标感知混合注意和空间语义联合上下文的SAR遥感图像小型船舶检测","authors":"Zhengjie Jiang, Yupei Wang, Xiaoqi Zhou, Liang Chen, Yuan Chang, Dongsheng Song, Hao Shi","doi":"10.3390/smartcities6030076","DOIUrl":null,"url":null,"abstract":"With the rapid development of deep learning technology in recent years, convolutional neural networks have gained remarkable progress in SAR ship detection tasks. However, noise interference of the background and inadequate appearance features of small-scale objects still pose challenges. To tackle these issues, we propose a small ship detection algorithm for SAR images by means of a coordinate-aware mixed attention mechanism and spatial semantic joint context method. First, the coordinate-aware mixed attention mechanism innovatively combines coordinate-aware channel attention and spatial attention to achieve coordinate alignment of mixed attention features. In this way, attention with finer spatial granularity is conducive to strengthening the focusing ability on small-scale objects, thereby suppressing the background clutters accurately. In addition, the spatial semantic joint context method exploits the local and global environmental information jointly. The detailed spatial cues contained in the multi-scale local context and the generalized semantic information encoded in the global context are used to enhance the feature expression and distinctiveness of small-scale ship objects. Extensive experiments are conducted on the LS-SSDD-v1.0 and the HRSID dataset. The results with an average precision of 77.23% and 90.85% on the two datasets show the effectiveness of the proposed methods.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Small-Scale Ship Detection for SAR Remote Sensing Images Based on Coordinate-Aware Mixed Attention and Spatial Semantic Joint Context\",\"authors\":\"Zhengjie Jiang, Yupei Wang, Xiaoqi Zhou, Liang Chen, Yuan Chang, Dongsheng Song, Hao Shi\",\"doi\":\"10.3390/smartcities6030076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of deep learning technology in recent years, convolutional neural networks have gained remarkable progress in SAR ship detection tasks. However, noise interference of the background and inadequate appearance features of small-scale objects still pose challenges. To tackle these issues, we propose a small ship detection algorithm for SAR images by means of a coordinate-aware mixed attention mechanism and spatial semantic joint context method. First, the coordinate-aware mixed attention mechanism innovatively combines coordinate-aware channel attention and spatial attention to achieve coordinate alignment of mixed attention features. In this way, attention with finer spatial granularity is conducive to strengthening the focusing ability on small-scale objects, thereby suppressing the background clutters accurately. In addition, the spatial semantic joint context method exploits the local and global environmental information jointly. The detailed spatial cues contained in the multi-scale local context and the generalized semantic information encoded in the global context are used to enhance the feature expression and distinctiveness of small-scale ship objects. Extensive experiments are conducted on the LS-SSDD-v1.0 and the HRSID dataset. The results with an average precision of 77.23% and 90.85% on the two datasets show the effectiveness of the proposed methods.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6030076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6030076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Small-Scale Ship Detection for SAR Remote Sensing Images Based on Coordinate-Aware Mixed Attention and Spatial Semantic Joint Context
With the rapid development of deep learning technology in recent years, convolutional neural networks have gained remarkable progress in SAR ship detection tasks. However, noise interference of the background and inadequate appearance features of small-scale objects still pose challenges. To tackle these issues, we propose a small ship detection algorithm for SAR images by means of a coordinate-aware mixed attention mechanism and spatial semantic joint context method. First, the coordinate-aware mixed attention mechanism innovatively combines coordinate-aware channel attention and spatial attention to achieve coordinate alignment of mixed attention features. In this way, attention with finer spatial granularity is conducive to strengthening the focusing ability on small-scale objects, thereby suppressing the background clutters accurately. In addition, the spatial semantic joint context method exploits the local and global environmental information jointly. The detailed spatial cues contained in the multi-scale local context and the generalized semantic information encoded in the global context are used to enhance the feature expression and distinctiveness of small-scale ship objects. Extensive experiments are conducted on the LS-SSDD-v1.0 and the HRSID dataset. The results with an average precision of 77.23% and 90.85% on the two datasets show the effectiveness of the proposed methods.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.