A. Bouboulas, P. Nikolakopoulos, Nikolaos Anifantis
{"title":"用人工神经网络预测振动梁裂纹深度和位置","authors":"A. Bouboulas, P. Nikolakopoulos, Nikolaos Anifantis","doi":"10.29354/diag/154758","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to develop a finite element procedure for crack prediction in vibrating beams. Based on this procedure, full frictional contact conditions are introduced between the crack surfaces in order to consider the breathing of crack. The region surrounding the crack is simulated by two-dimensional finite elements. An incremental-iterative procedure is employed to solve the nonlinear dynamic equations governing this problem. The obtained time response is processed with Fast Fourier Transform to extract its frequency components. The first three natural frequencies are input to a trained Artificial Neural Network for depth and position prediction of the crack. This study is validated for a dynamic loading cantilever beam. It is found that the proposed procedure is capable of predicting the crack depth and position with high accuracy.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of crack depth and position in vibrating beams using artificial neural networks\",\"authors\":\"A. Bouboulas, P. Nikolakopoulos, Nikolaos Anifantis\",\"doi\":\"10.29354/diag/154758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to develop a finite element procedure for crack prediction in vibrating beams. Based on this procedure, full frictional contact conditions are introduced between the crack surfaces in order to consider the breathing of crack. The region surrounding the crack is simulated by two-dimensional finite elements. An incremental-iterative procedure is employed to solve the nonlinear dynamic equations governing this problem. The obtained time response is processed with Fast Fourier Transform to extract its frequency components. The first three natural frequencies are input to a trained Artificial Neural Network for depth and position prediction of the crack. This study is validated for a dynamic loading cantilever beam. It is found that the proposed procedure is capable of predicting the crack depth and position with high accuracy.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/154758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/154758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Prediction of crack depth and position in vibrating beams using artificial neural networks
The aim of this paper is to develop a finite element procedure for crack prediction in vibrating beams. Based on this procedure, full frictional contact conditions are introduced between the crack surfaces in order to consider the breathing of crack. The region surrounding the crack is simulated by two-dimensional finite elements. An incremental-iterative procedure is employed to solve the nonlinear dynamic equations governing this problem. The obtained time response is processed with Fast Fourier Transform to extract its frequency components. The first three natural frequencies are input to a trained Artificial Neural Network for depth and position prediction of the crack. This study is validated for a dynamic loading cantilever beam. It is found that the proposed procedure is capable of predicting the crack depth and position with high accuracy.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.