{"title":"焊接残余应力和变形预测的最新进展-第1部分","authors":"Yu-ping Yang","doi":"10.29391/2021.100.013","DOIUrl":null,"url":null,"abstract":"Residual stresses and distortions are the result of complex interactions between welding heat input, the material’s high-temperature response, and joint constraint conditions. Both weld residual stress and distortion can significantly impair the performance and reliability of welded structures. In the past two decades, there have been many significant and exciting developments in the prediction and mitigation of weld residual stress and distortion. This paper reviews the recent advances in the prediction of weld residual stress and distortion by focusing on the numerical modeling theory and methods. The prediction methods covered in this paper include a thermo-mechanical-metallurgical method, simplified analysis methods, friction stir welding modeling methods, buckling distortion prediction methods, a welding cloud computational method, integrated manufacturing process modeling, and integrated computational materials engineering (ICME) weld modeling. Remaining challenges and new developments are also discussed to guide future predictions of weld residual stress and","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recent Advances in the Prediction of Weld Residual Stress and Distortion - Part 1\",\"authors\":\"Yu-ping Yang\",\"doi\":\"10.29391/2021.100.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residual stresses and distortions are the result of complex interactions between welding heat input, the material’s high-temperature response, and joint constraint conditions. Both weld residual stress and distortion can significantly impair the performance and reliability of welded structures. In the past two decades, there have been many significant and exciting developments in the prediction and mitigation of weld residual stress and distortion. This paper reviews the recent advances in the prediction of weld residual stress and distortion by focusing on the numerical modeling theory and methods. The prediction methods covered in this paper include a thermo-mechanical-metallurgical method, simplified analysis methods, friction stir welding modeling methods, buckling distortion prediction methods, a welding cloud computational method, integrated manufacturing process modeling, and integrated computational materials engineering (ICME) weld modeling. Remaining challenges and new developments are also discussed to guide future predictions of weld residual stress and\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2021.100.013\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.013","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Recent Advances in the Prediction of Weld Residual Stress and Distortion - Part 1
Residual stresses and distortions are the result of complex interactions between welding heat input, the material’s high-temperature response, and joint constraint conditions. Both weld residual stress and distortion can significantly impair the performance and reliability of welded structures. In the past two decades, there have been many significant and exciting developments in the prediction and mitigation of weld residual stress and distortion. This paper reviews the recent advances in the prediction of weld residual stress and distortion by focusing on the numerical modeling theory and methods. The prediction methods covered in this paper include a thermo-mechanical-metallurgical method, simplified analysis methods, friction stir welding modeling methods, buckling distortion prediction methods, a welding cloud computational method, integrated manufacturing process modeling, and integrated computational materials engineering (ICME) weld modeling. Remaining challenges and new developments are also discussed to guide future predictions of weld residual stress and
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.