{"title":"热处理Cu2Zn0.6Ca0.4SnS4合金薄膜的合成与表征","authors":"","doi":"10.33263/briac134.390","DOIUrl":null,"url":null,"abstract":"Six samples of Cu2Zn0.6Ca0.4SnS4 labeled Y1 – Y6 were spin-coated on a pre-cleaned glass from 20 ml each of 0.067 moll Calcium sulfate (CaSO4, 98.5% KermerR) and 0.1 mol each of zinc nitrate (Zn(NO3)2, 99% Aldrich), Copper(II)sulfate hexahydrate (Cu2SO4.6H2O, 98.5% KermerR), stannous sulfate (SnSO4, 99% KermerR), and sodium thiosulfate (Na2S2O3, 98.5% Aldrich) with ammonium hydroxide (NH4OH, 99% DHR) and triethanolamine (C6H15NO3, 99% KermerR) used as complexing agents. They were left to dry at room temperature. Y2 – Y6 were subjected to heat tempering in a carbolite furnace between 150 - 750 ℃ with a step height of 150 ℃. The alloy thin films were structurally, morphologically, and optically characterized. The grain sizes for Y1, Y2, Y3, Y4, Y5, and Y6 are 15 nm, 40nm,43 nm, 45 nm, 44 nm, and 42 nm, respectively. The interruption of the normal stacking sequence of atomic planes initially decreases as the temperature increases and the microstrain. The microstrain and stacking fault energy both climaxed at 600 ℃. Microstrain and stacking fault energy exhibit a sine and allometric relationship with the temperature (T). As the temperature increases, the band gap reduces from 3.60 eV to 3.26 eV. The residue effect of heat on the band gap variation gives a relative exponential decay of the crystallite. The difference between a shift in energy and a change in optical band gap (∆Estrain) as a function of temperature is given as -0.031 ±3.66667×10^(-4) T.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Heat-Tempered Cu2Zn0.6Ca0.4SnS4 Alloy Thin Film\",\"authors\":\"\",\"doi\":\"10.33263/briac134.390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Six samples of Cu2Zn0.6Ca0.4SnS4 labeled Y1 – Y6 were spin-coated on a pre-cleaned glass from 20 ml each of 0.067 moll Calcium sulfate (CaSO4, 98.5% KermerR) and 0.1 mol each of zinc nitrate (Zn(NO3)2, 99% Aldrich), Copper(II)sulfate hexahydrate (Cu2SO4.6H2O, 98.5% KermerR), stannous sulfate (SnSO4, 99% KermerR), and sodium thiosulfate (Na2S2O3, 98.5% Aldrich) with ammonium hydroxide (NH4OH, 99% DHR) and triethanolamine (C6H15NO3, 99% KermerR) used as complexing agents. They were left to dry at room temperature. Y2 – Y6 were subjected to heat tempering in a carbolite furnace between 150 - 750 ℃ with a step height of 150 ℃. The alloy thin films were structurally, morphologically, and optically characterized. The grain sizes for Y1, Y2, Y3, Y4, Y5, and Y6 are 15 nm, 40nm,43 nm, 45 nm, 44 nm, and 42 nm, respectively. The interruption of the normal stacking sequence of atomic planes initially decreases as the temperature increases and the microstrain. The microstrain and stacking fault energy both climaxed at 600 ℃. Microstrain and stacking fault energy exhibit a sine and allometric relationship with the temperature (T). As the temperature increases, the band gap reduces from 3.60 eV to 3.26 eV. The residue effect of heat on the band gap variation gives a relative exponential decay of the crystallite. The difference between a shift in energy and a change in optical band gap (∆Estrain) as a function of temperature is given as -0.031 ±3.66667×10^(-4) T.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Synthesis and Characterization of Heat-Tempered Cu2Zn0.6Ca0.4SnS4 Alloy Thin Film
Six samples of Cu2Zn0.6Ca0.4SnS4 labeled Y1 – Y6 were spin-coated on a pre-cleaned glass from 20 ml each of 0.067 moll Calcium sulfate (CaSO4, 98.5% KermerR) and 0.1 mol each of zinc nitrate (Zn(NO3)2, 99% Aldrich), Copper(II)sulfate hexahydrate (Cu2SO4.6H2O, 98.5% KermerR), stannous sulfate (SnSO4, 99% KermerR), and sodium thiosulfate (Na2S2O3, 98.5% Aldrich) with ammonium hydroxide (NH4OH, 99% DHR) and triethanolamine (C6H15NO3, 99% KermerR) used as complexing agents. They were left to dry at room temperature. Y2 – Y6 were subjected to heat tempering in a carbolite furnace between 150 - 750 ℃ with a step height of 150 ℃. The alloy thin films were structurally, morphologically, and optically characterized. The grain sizes for Y1, Y2, Y3, Y4, Y5, and Y6 are 15 nm, 40nm,43 nm, 45 nm, 44 nm, and 42 nm, respectively. The interruption of the normal stacking sequence of atomic planes initially decreases as the temperature increases and the microstrain. The microstrain and stacking fault energy both climaxed at 600 ℃. Microstrain and stacking fault energy exhibit a sine and allometric relationship with the temperature (T). As the temperature increases, the band gap reduces from 3.60 eV to 3.26 eV. The residue effect of heat on the band gap variation gives a relative exponential decay of the crystallite. The difference between a shift in energy and a change in optical band gap (∆Estrain) as a function of temperature is given as -0.031 ±3.66667×10^(-4) T.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.