{"title":"磁性纳米粒子负载磺酸作为绿色催化剂在无溶剂条件下一锅合成2,4,5-三取代咪唑和1,2,4,5-四取代咪唑","authors":"Mahnaz Sakhdari, A. Amoozadeh, E. Kolvari","doi":"10.1515/hc-2020-0125","DOIUrl":null,"url":null,"abstract":"Abstract In this work, magnetic nanoparticle-supported sulfonic acid (γ-Fe2O3-SO3H) is used as an efficient catalyst in the synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles in a short time (40–70 min for trisubstituted imidazoles and 30–40 min for tetrasubstituted imidazoles) and high-purity products were obtained (92–98% for trisubstituted imidazoles and 94–98% for tetrasubstituted imidazoles) in simple multicomponent reactions. The structure of these products was confirmed via FT-IR and NMR. Green and recyclable catalysts, eco-friendly and solvent-free conditions, high catalytic activity, shorter reaction time, easy recovery by an external magnet, high purity, and excellent yields are some features of these reactions. Graphical abstract","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"27 1","pages":"71 - 78"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Magnetic nanoparticle-supported sulfonic acid as a green catalyst for the one-pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions\",\"authors\":\"Mahnaz Sakhdari, A. Amoozadeh, E. Kolvari\",\"doi\":\"10.1515/hc-2020-0125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, magnetic nanoparticle-supported sulfonic acid (γ-Fe2O3-SO3H) is used as an efficient catalyst in the synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles in a short time (40–70 min for trisubstituted imidazoles and 30–40 min for tetrasubstituted imidazoles) and high-purity products were obtained (92–98% for trisubstituted imidazoles and 94–98% for tetrasubstituted imidazoles) in simple multicomponent reactions. The structure of these products was confirmed via FT-IR and NMR. Green and recyclable catalysts, eco-friendly and solvent-free conditions, high catalytic activity, shorter reaction time, easy recovery by an external magnet, high purity, and excellent yields are some features of these reactions. Graphical abstract\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"27 1\",\"pages\":\"71 - 78\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2020-0125\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0125","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Magnetic nanoparticle-supported sulfonic acid as a green catalyst for the one-pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions
Abstract In this work, magnetic nanoparticle-supported sulfonic acid (γ-Fe2O3-SO3H) is used as an efficient catalyst in the synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles in a short time (40–70 min for trisubstituted imidazoles and 30–40 min for tetrasubstituted imidazoles) and high-purity products were obtained (92–98% for trisubstituted imidazoles and 94–98% for tetrasubstituted imidazoles) in simple multicomponent reactions. The structure of these products was confirmed via FT-IR and NMR. Green and recyclable catalysts, eco-friendly and solvent-free conditions, high catalytic activity, shorter reaction time, easy recovery by an external magnet, high purity, and excellent yields are some features of these reactions. Graphical abstract
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.