Mohammed A Al Mutairi, Hatim A Al Herbish, Rakan S Al-Ajmi, Hatim Z Alhazmi, Reham A Al-Dhelaan, Abdullah M Alowaifeer
{"title":"分析沙特阿拉伯进口烟草中的农药和金属(样物质),以及吸入接触某些金属的风险评估","authors":"Mohammed A Al Mutairi, Hatim A Al Herbish, Rakan S Al-Ajmi, Hatim Z Alhazmi, Reham A Al-Dhelaan, Abdullah M Alowaifeer","doi":"10.1080/08958378.2022.2037791","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to toxic chemicals through smoked tobacco is a significant global public health issue due to their genotoxic and carcinogenic properties. The study aims to (1) measure Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Mercury (Hg), Nickle (Ni), lead (Pb), and 407 pesticides in tobacco commercialized in Saudi Arabia; and (2) evaluate human health risks associated with smoking tobacco. Thus, we analyzed 60 tobacco samples per brand from eight of the most popular tobacco brands in the Saudi market. The analyzed tobacco contained significant concentrations of toxic metal (loid)s and banned pesticides. Twenty-three out of 407 pesticide residues were found, with an average concentration of 0.004-1.155 µg/g. Average concentrations of As, Cd, Co, Cr, Hg, Ni, and Pb for all brands were 0.16, 0.57, 0.75, 1.36, 1.94, 0.01, and 0.37 µg/g, respectively. The risk assessment indicated that high cancer risks are associated with exposure to As, Cd, Cr, and Ni, while lower risks are associated with Pb. Additionally, the potential cancer risk estimated for Cr was higher than other toxic elements. The cumulative cancer risks (95%) under three different cases for all brands were greater than the permissible limits (=10<sup>-4</sup>). The chances of getting cancer through inhalation of particulate As, Cd, Cr, Ni, and Pb was 4 in 10 000 cases in the best case scenario (1 cigarette per day). Therefore, metal content in cigarette tobacco should be reduced to improve public health.HIGHLIGHTSAll tested brands contained banned pesticide residues except for brand C.Tobacco samples contained significant concentrations of toxic metal(loid)s.A high risk of developing cancer is associated with exposure to As, Cd, Cr, and Ni, while a lower risk is associated with exposure to Pb.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"34 1","pages":"68-79"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing pesticides and metal(loid)s in imported tobacco to Saudi Arabia and risk assessment of inhalation exposure to certain metals.\",\"authors\":\"Mohammed A Al Mutairi, Hatim A Al Herbish, Rakan S Al-Ajmi, Hatim Z Alhazmi, Reham A Al-Dhelaan, Abdullah M Alowaifeer\",\"doi\":\"10.1080/08958378.2022.2037791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to toxic chemicals through smoked tobacco is a significant global public health issue due to their genotoxic and carcinogenic properties. The study aims to (1) measure Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Mercury (Hg), Nickle (Ni), lead (Pb), and 407 pesticides in tobacco commercialized in Saudi Arabia; and (2) evaluate human health risks associated with smoking tobacco. Thus, we analyzed 60 tobacco samples per brand from eight of the most popular tobacco brands in the Saudi market. The analyzed tobacco contained significant concentrations of toxic metal (loid)s and banned pesticides. Twenty-three out of 407 pesticide residues were found, with an average concentration of 0.004-1.155 µg/g. Average concentrations of As, Cd, Co, Cr, Hg, Ni, and Pb for all brands were 0.16, 0.57, 0.75, 1.36, 1.94, 0.01, and 0.37 µg/g, respectively. The risk assessment indicated that high cancer risks are associated with exposure to As, Cd, Cr, and Ni, while lower risks are associated with Pb. Additionally, the potential cancer risk estimated for Cr was higher than other toxic elements. The cumulative cancer risks (95%) under three different cases for all brands were greater than the permissible limits (=10<sup>-4</sup>). The chances of getting cancer through inhalation of particulate As, Cd, Cr, Ni, and Pb was 4 in 10 000 cases in the best case scenario (1 cigarette per day). Therefore, metal content in cigarette tobacco should be reduced to improve public health.HIGHLIGHTSAll tested brands contained banned pesticide residues except for brand C.Tobacco samples contained significant concentrations of toxic metal(loid)s.A high risk of developing cancer is associated with exposure to As, Cd, Cr, and Ni, while a lower risk is associated with exposure to Pb.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\"34 1\",\"pages\":\"68-79\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2022.2037791\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2022.2037791","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Analyzing pesticides and metal(loid)s in imported tobacco to Saudi Arabia and risk assessment of inhalation exposure to certain metals.
Exposure to toxic chemicals through smoked tobacco is a significant global public health issue due to their genotoxic and carcinogenic properties. The study aims to (1) measure Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Mercury (Hg), Nickle (Ni), lead (Pb), and 407 pesticides in tobacco commercialized in Saudi Arabia; and (2) evaluate human health risks associated with smoking tobacco. Thus, we analyzed 60 tobacco samples per brand from eight of the most popular tobacco brands in the Saudi market. The analyzed tobacco contained significant concentrations of toxic metal (loid)s and banned pesticides. Twenty-three out of 407 pesticide residues were found, with an average concentration of 0.004-1.155 µg/g. Average concentrations of As, Cd, Co, Cr, Hg, Ni, and Pb for all brands were 0.16, 0.57, 0.75, 1.36, 1.94, 0.01, and 0.37 µg/g, respectively. The risk assessment indicated that high cancer risks are associated with exposure to As, Cd, Cr, and Ni, while lower risks are associated with Pb. Additionally, the potential cancer risk estimated for Cr was higher than other toxic elements. The cumulative cancer risks (95%) under three different cases for all brands were greater than the permissible limits (=10-4). The chances of getting cancer through inhalation of particulate As, Cd, Cr, Ni, and Pb was 4 in 10 000 cases in the best case scenario (1 cigarette per day). Therefore, metal content in cigarette tobacco should be reduced to improve public health.HIGHLIGHTSAll tested brands contained banned pesticide residues except for brand C.Tobacco samples contained significant concentrations of toxic metal(loid)s.A high risk of developing cancer is associated with exposure to As, Cd, Cr, and Ni, while a lower risk is associated with exposure to Pb.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.