仿射Orlicz-log-Minkowki不等式

IF 1.4 4区 数学 Q1 MATHEMATICS
Chang-Jian Zhao
{"title":"仿射Orlicz-log-Minkowki不等式","authors":"Chang-Jian Zhao","doi":"10.37193/cjm.2023.01.20","DOIUrl":null,"url":null,"abstract":"In this paper, we establish an affine Orlicz log-Minkowki inequality for the affine quermassintegrals by introducing new concepts of affine measures and Orlicz mixed affine measures, and using the newly established Orlicz affine Minkowski inequality for the affine quermassintegrals. The affine Orlicz log-Minkowski inequality in special case yields $L_{p}$-affine log-Minkowski inequality. The affine log-Minkowski inequality is also derived.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The affine Orlicz log-Minkowki inequality\",\"authors\":\"Chang-Jian Zhao\",\"doi\":\"10.37193/cjm.2023.01.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish an affine Orlicz log-Minkowki inequality for the affine quermassintegrals by introducing new concepts of affine measures and Orlicz mixed affine measures, and using the newly established Orlicz affine Minkowski inequality for the affine quermassintegrals. The affine Orlicz log-Minkowski inequality in special case yields $L_{p}$-affine log-Minkowski inequality. The affine log-Minkowski inequality is also derived.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.20\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过引入仿射测度和Orlicz混合仿射测度的新概念,并利用新建立的仿射-奎马积分的Orlicz-affine-Minkowski不等式,建立了仿射-奎马积分的仿射-Orlicz-log-Minkowki不等式。仿射Orlicz-log-Minkowski不等式在特殊情况下产生$L_{p}$-仿射log-Minkawski不等式。导出了仿射对数Minkowski不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The affine Orlicz log-Minkowki inequality
In this paper, we establish an affine Orlicz log-Minkowki inequality for the affine quermassintegrals by introducing new concepts of affine measures and Orlicz mixed affine measures, and using the newly established Orlicz affine Minkowski inequality for the affine quermassintegrals. The affine Orlicz log-Minkowski inequality in special case yields $L_{p}$-affine log-Minkowski inequality. The affine log-Minkowski inequality is also derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信