{"title":"使用投影后验的单调密度的速率和覆盖率","authors":"Moumita Chakraborty, S. Ghosal","doi":"10.3150/21-bej1379","DOIUrl":null,"url":null,"abstract":"We consider Bayesian inference for a monotone density on the unit interval and study the resulting asymptotic properties. We consider a “projection-posterior” approach, where we construct a prior on density functions through random histograms without imposing the monotonicity constraint, but induce a random distribution by projecting a sample from the posterior on the space of monotone functions. The approach allows us to retain posterior conjugacy, allowing explicit expressions extremely useful for studying asymptotic properties. We show that the projection-posterior contracts at the optimal n−1/3-rate. We then construct a consistent test based on the posterior distribution for testing the hypothesis of monotonicity. Finally, we obtain the limiting coverage of a projection-posterior credible interval for the value of the function at an interior point. Interestingly, the limiting coverage turns out to be higher than the nominal credibility level, the opposite of the undercoverage phenomenon observed in a smoothness regime. Moreover, we show that a recalibration method using a lower credibility level gives an intended limiting coverage. We also discuss extensions of the obtained results for densities on the half-line. We conduct a simulation study to demonstrate the accuracy of the asymptotic results in finite samples.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rates and coverage for monotone densities using projection-posterior\",\"authors\":\"Moumita Chakraborty, S. Ghosal\",\"doi\":\"10.3150/21-bej1379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Bayesian inference for a monotone density on the unit interval and study the resulting asymptotic properties. We consider a “projection-posterior” approach, where we construct a prior on density functions through random histograms without imposing the monotonicity constraint, but induce a random distribution by projecting a sample from the posterior on the space of monotone functions. The approach allows us to retain posterior conjugacy, allowing explicit expressions extremely useful for studying asymptotic properties. We show that the projection-posterior contracts at the optimal n−1/3-rate. We then construct a consistent test based on the posterior distribution for testing the hypothesis of monotonicity. Finally, we obtain the limiting coverage of a projection-posterior credible interval for the value of the function at an interior point. Interestingly, the limiting coverage turns out to be higher than the nominal credibility level, the opposite of the undercoverage phenomenon observed in a smoothness regime. Moreover, we show that a recalibration method using a lower credibility level gives an intended limiting coverage. We also discuss extensions of the obtained results for densities on the half-line. We conduct a simulation study to demonstrate the accuracy of the asymptotic results in finite samples.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/21-bej1379\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1379","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Rates and coverage for monotone densities using projection-posterior
We consider Bayesian inference for a monotone density on the unit interval and study the resulting asymptotic properties. We consider a “projection-posterior” approach, where we construct a prior on density functions through random histograms without imposing the monotonicity constraint, but induce a random distribution by projecting a sample from the posterior on the space of monotone functions. The approach allows us to retain posterior conjugacy, allowing explicit expressions extremely useful for studying asymptotic properties. We show that the projection-posterior contracts at the optimal n−1/3-rate. We then construct a consistent test based on the posterior distribution for testing the hypothesis of monotonicity. Finally, we obtain the limiting coverage of a projection-posterior credible interval for the value of the function at an interior point. Interestingly, the limiting coverage turns out to be higher than the nominal credibility level, the opposite of the undercoverage phenomenon observed in a smoothness regime. Moreover, we show that a recalibration method using a lower credibility level gives an intended limiting coverage. We also discuss extensions of the obtained results for densities on the half-line. We conduct a simulation study to demonstrate the accuracy of the asymptotic results in finite samples.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.