Weyl群作用的不变量与量子仿射代数的q-特征

Pub Date : 2023-05-09 DOI:10.1007/s10468-023-10205-1
Rei Inoue, Takao Yamazaki
{"title":"Weyl群作用的不变量与量子仿射代数的q-特征","authors":"Rei Inoue,&nbsp;Takao Yamazaki","doi":"10.1007/s10468-023-10205-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>W</i> be the Weyl group corresponding to a finite dimensional simple Lie algebra <span>\\(\\mathfrak {g}\\)</span> of rank <span>\\(\\ell \\)</span> and let <span>\\(m&gt;1\\)</span> be an integer. In Inoue (Lett. Math. Phys. 111(1):32, 2021), by applying cluster mutations, a <i>W</i>-action on <span>\\(\\mathcal {Y}_m\\)</span> was constructed. Here <span>\\(\\mathcal {Y}_m\\)</span> is the rational function field on <span>\\(cm\\ell \\)</span> commuting variables, where <span>\\(c \\in \\{ 1, 2, 3 \\}\\)</span> depends on <span>\\(\\mathfrak {g}\\)</span>. This was motivated by the <i>q</i>-character map <span>\\(\\chi _q\\)</span> of the category of finite dimensional representations of quantum affine algebra <span>\\(U_q(\\hat{\\mathfrak {g}})\\)</span>. We showed in Inoue (Lett. Math. Phys. 111(1):32, 2021) that when <i>q</i> is a root of unity, <span>\\(\\textrm{Im} \\chi _q\\)</span> is a subring of the <i>W</i>-invariant subfield <span>\\(\\mathcal {Y}_m^W\\)</span> of <span>\\(\\mathcal {Y}_m\\)</span>. In this paper, we give more detailed study on <span>\\(\\mathcal {Y}_m^W\\)</span>; for each reflection <span>\\(r_i \\in W\\)</span> associated to the <i>i</i>th simple root, we describe the <span>\\(r_i\\)</span>-invariant subfield <span>\\(\\mathcal {Y}_m^{r_i}\\)</span> of <span>\\(\\mathcal {Y}_m\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariants of Weyl Group Action and q-characters of Quantum Affine Algebras\",\"authors\":\"Rei Inoue,&nbsp;Takao Yamazaki\",\"doi\":\"10.1007/s10468-023-10205-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>W</i> be the Weyl group corresponding to a finite dimensional simple Lie algebra <span>\\\\(\\\\mathfrak {g}\\\\)</span> of rank <span>\\\\(\\\\ell \\\\)</span> and let <span>\\\\(m&gt;1\\\\)</span> be an integer. In Inoue (Lett. Math. Phys. 111(1):32, 2021), by applying cluster mutations, a <i>W</i>-action on <span>\\\\(\\\\mathcal {Y}_m\\\\)</span> was constructed. Here <span>\\\\(\\\\mathcal {Y}_m\\\\)</span> is the rational function field on <span>\\\\(cm\\\\ell \\\\)</span> commuting variables, where <span>\\\\(c \\\\in \\\\{ 1, 2, 3 \\\\}\\\\)</span> depends on <span>\\\\(\\\\mathfrak {g}\\\\)</span>. This was motivated by the <i>q</i>-character map <span>\\\\(\\\\chi _q\\\\)</span> of the category of finite dimensional representations of quantum affine algebra <span>\\\\(U_q(\\\\hat{\\\\mathfrak {g}})\\\\)</span>. We showed in Inoue (Lett. Math. Phys. 111(1):32, 2021) that when <i>q</i> is a root of unity, <span>\\\\(\\\\textrm{Im} \\\\chi _q\\\\)</span> is a subring of the <i>W</i>-invariant subfield <span>\\\\(\\\\mathcal {Y}_m^W\\\\)</span> of <span>\\\\(\\\\mathcal {Y}_m\\\\)</span>. In this paper, we give more detailed study on <span>\\\\(\\\\mathcal {Y}_m^W\\\\)</span>; for each reflection <span>\\\\(r_i \\\\in W\\\\)</span> associated to the <i>i</i>th simple root, we describe the <span>\\\\(r_i\\\\)</span>-invariant subfield <span>\\\\(\\\\mathcal {Y}_m^{r_i}\\\\)</span> of <span>\\\\(\\\\mathcal {Y}_m\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10205-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10205-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 W 是与秩为 (ell \)的有限维简单李代数 (\mathfrak {g}\)相对应的韦尔群,让 (m>1\)是一个整数。Inoue (Lett.Math.111(1):32,2021),通过应用簇突变,在 \(\mathcal {Y}_m\) 上构造了一个 W 作用。这里,\(\mathcal {Y}_m\) 是关于\(cm\ell \)换向变量的有理函数域,其中\(c \in \{ 1, 2, 3 \}\)取决于\(\mathfrak {g}\)。这是由量子仿射代数的有限维表示范畴中的(U_q(hat\{\mathfrak {g}})\)的q特征映射(qacter map \(\chi _q\))激发的。我们在 Inoue (Lett.Math.111(1):32,2021)中表明,当 q 是一个统一根时,\(\textrm{Im} \chi _q\)是 \(\mathcal {Y}_m^W\) 的 W 不变子域 \(\mathcal {Y}_m^W\) 的一个子环。本文将对\(\mathcal {Y}_m^W\) 进行更详细的研究;对于与第 i 个单根相关的每个反射 \(r_i \in W\) ,我们将描述 \(r_i\)-invariant 子域 \(\mathcal {Y}_m^{r_i}\) of \(\mathcal {Y}_m\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariants of Weyl Group Action and q-characters of Quantum Affine Algebras

Let W be the Weyl group corresponding to a finite dimensional simple Lie algebra \(\mathfrak {g}\) of rank \(\ell \) and let \(m>1\) be an integer. In Inoue (Lett. Math. Phys. 111(1):32, 2021), by applying cluster mutations, a W-action on \(\mathcal {Y}_m\) was constructed. Here \(\mathcal {Y}_m\) is the rational function field on \(cm\ell \) commuting variables, where \(c \in \{ 1, 2, 3 \}\) depends on \(\mathfrak {g}\). This was motivated by the q-character map \(\chi _q\) of the category of finite dimensional representations of quantum affine algebra \(U_q(\hat{\mathfrak {g}})\). We showed in Inoue (Lett. Math. Phys. 111(1):32, 2021) that when q is a root of unity, \(\textrm{Im} \chi _q\) is a subring of the W-invariant subfield \(\mathcal {Y}_m^W\) of \(\mathcal {Y}_m\). In this paper, we give more detailed study on \(\mathcal {Y}_m^W\); for each reflection \(r_i \in W\) associated to the ith simple root, we describe the \(r_i\)-invariant subfield \(\mathcal {Y}_m^{r_i}\) of \(\mathcal {Y}_m\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信