{"title":"多元线性回归、主成分分析和层次聚类分析相结合优化马齿苋提取工艺","authors":"Traiphop Phahom , Jun'ichi Mano","doi":"10.1016/j.jarmap.2023.100511","DOIUrl":null,"url":null,"abstract":"<div><p>Fingerroot (<em>Boesenbergia rotunda</em><span><span>) is a medicinal plant<span>. Recently, it was reported to have the highest potent anti-SARS-CoV-2 activity among 122 Thai medicinal plants, owing to its phenolic compounds. In this study, we aimed to optimize the conditions for extracting phenolics and their functional properties from dried fingerroot. To design the extraction conditions, fifteen treatments<span> were obtained from a combination of three independent variables (temperature, time, and methanol content in acetone) using a Box-Behnken design. The extraction conditions were evaluated based on total phenolic content (TPC), ferric ion reducing antioxidant power (FRAP), and acrolein scavenging ability (ACSA). These values were fitted to a quadratic polynomial model utilizing </span></span></span>multiple linear regressions (MLR). Principal component analysis (PCA), together with hierarchical cluster analysis (HCA), was then used to select the optimal conditions. The predictive models well described the TPC and ACSA. Employing the optimized conditions, i.e., 45 °C, 60 min, and 75% methanol, resulted in the extract having 2.98 mg GAE g</span><sub>dw</sub><sup>−1</sup>, 2.02 mg TE g<sub>dw</sub><sup>−1</sup>, and 0.156 nmol s<sup>−1</sup>g<sub>dw</sub><sup>−1</sup> for TPC, FRAP, and ACSA, respectively. These results were 3.5-, 4.1-, and 2.5-fold higher than the lowest values predicted by the developed models for TPC, FRAP, and ACSA, respectively. The extraction conditions for TPC, FRAP, and ACSA from dried fingerroot were successfully optimized. The combined technique (MLR+PCA+HCA) proposed in this study yielded results comparable to those obtained using conventional techniques. Therefore, it can be used as an alternative optimization method.</p></div>","PeriodicalId":15136,"journal":{"name":"Journal of Applied Research on Medicinal and Aromatic Plants","volume":"36 ","pages":"Article 100511"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of multiple linear regression, principal component analysis, and hierarchical cluster analysis for optimizing dried fingerroot (Boesenbergia rotunda) extraction process\",\"authors\":\"Traiphop Phahom , Jun'ichi Mano\",\"doi\":\"10.1016/j.jarmap.2023.100511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fingerroot (<em>Boesenbergia rotunda</em><span><span>) is a medicinal plant<span>. Recently, it was reported to have the highest potent anti-SARS-CoV-2 activity among 122 Thai medicinal plants, owing to its phenolic compounds. In this study, we aimed to optimize the conditions for extracting phenolics and their functional properties from dried fingerroot. To design the extraction conditions, fifteen treatments<span> were obtained from a combination of three independent variables (temperature, time, and methanol content in acetone) using a Box-Behnken design. The extraction conditions were evaluated based on total phenolic content (TPC), ferric ion reducing antioxidant power (FRAP), and acrolein scavenging ability (ACSA). These values were fitted to a quadratic polynomial model utilizing </span></span></span>multiple linear regressions (MLR). Principal component analysis (PCA), together with hierarchical cluster analysis (HCA), was then used to select the optimal conditions. The predictive models well described the TPC and ACSA. Employing the optimized conditions, i.e., 45 °C, 60 min, and 75% methanol, resulted in the extract having 2.98 mg GAE g</span><sub>dw</sub><sup>−1</sup>, 2.02 mg TE g<sub>dw</sub><sup>−1</sup>, and 0.156 nmol s<sup>−1</sup>g<sub>dw</sub><sup>−1</sup> for TPC, FRAP, and ACSA, respectively. These results were 3.5-, 4.1-, and 2.5-fold higher than the lowest values predicted by the developed models for TPC, FRAP, and ACSA, respectively. The extraction conditions for TPC, FRAP, and ACSA from dried fingerroot were successfully optimized. The combined technique (MLR+PCA+HCA) proposed in this study yielded results comparable to those obtained using conventional techniques. Therefore, it can be used as an alternative optimization method.</p></div>\",\"PeriodicalId\":15136,\"journal\":{\"name\":\"Journal of Applied Research on Medicinal and Aromatic Plants\",\"volume\":\"36 \",\"pages\":\"Article 100511\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research on Medicinal and Aromatic Plants\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214786123000554\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research on Medicinal and Aromatic Plants","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214786123000554","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integration of multiple linear regression, principal component analysis, and hierarchical cluster analysis for optimizing dried fingerroot (Boesenbergia rotunda) extraction process
Fingerroot (Boesenbergia rotunda) is a medicinal plant. Recently, it was reported to have the highest potent anti-SARS-CoV-2 activity among 122 Thai medicinal plants, owing to its phenolic compounds. In this study, we aimed to optimize the conditions for extracting phenolics and their functional properties from dried fingerroot. To design the extraction conditions, fifteen treatments were obtained from a combination of three independent variables (temperature, time, and methanol content in acetone) using a Box-Behnken design. The extraction conditions were evaluated based on total phenolic content (TPC), ferric ion reducing antioxidant power (FRAP), and acrolein scavenging ability (ACSA). These values were fitted to a quadratic polynomial model utilizing multiple linear regressions (MLR). Principal component analysis (PCA), together with hierarchical cluster analysis (HCA), was then used to select the optimal conditions. The predictive models well described the TPC and ACSA. Employing the optimized conditions, i.e., 45 °C, 60 min, and 75% methanol, resulted in the extract having 2.98 mg GAE gdw−1, 2.02 mg TE gdw−1, and 0.156 nmol s−1gdw−1 for TPC, FRAP, and ACSA, respectively. These results were 3.5-, 4.1-, and 2.5-fold higher than the lowest values predicted by the developed models for TPC, FRAP, and ACSA, respectively. The extraction conditions for TPC, FRAP, and ACSA from dried fingerroot were successfully optimized. The combined technique (MLR+PCA+HCA) proposed in this study yielded results comparable to those obtained using conventional techniques. Therefore, it can be used as an alternative optimization method.
期刊介绍:
JARMAP is a peer reviewed and multidisciplinary communication platform, covering all aspects of the raw material supply chain of medicinal and aromatic plants. JARMAP aims to improve production of tailor made commodities by addressing the various requirements of manufacturers of herbal medicines, herbal teas, seasoning herbs, food and feed supplements and cosmetics. JARMAP covers research on genetic resources, breeding, wild-collection, domestication, propagation, cultivation, phytopathology and plant protection, mechanization, conservation, processing, quality assurance, analytics and economics. JARMAP publishes reviews, original research articles and short communications related to research.