William R Hersh, Robert E Hoyt, Steven Chamberlin, Jessica S Ancker, Aditi Gupta, Tara B Borlawsky-Payne
{"title":"超越数学、统计学和编程:数据科学、机器学习和人工智能能力以及临床医生、信息学家、科学记者和研究人员的课程","authors":"William R Hersh, Robert E Hoyt, Steven Chamberlin, Jessica S Ancker, Aditi Gupta, Tara B Borlawsky-Payne","doi":"10.1080/20476965.2023.2237745","DOIUrl":null,"url":null,"abstract":"<p><p>Data science, machine learning and artificial intelligence applications impact clinicians, informaticians, science journalists, and researchers. Most biomedical data science training focuses on learning a programming language in addition to higher mathematics and advanced statistics. This approach is appropriate for graduate students but greatly reduces the number of individuals in healthcare who can be involved in data science. To serve these four stakeholder audiences, we describe several curricular strategies focusing on solving real problems of interest to these audiences. Relevant competencies for these audiences include using intuitive programming tools that facilitate data exploration with minimal programming background, creating data models, evaluating results of data analyses, and assessing data science research reports, among others. Offering the curricula described here more broadly could broaden the stakeholder groups knowledgeable about and engaged in data science.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583607/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond mathematics, statistics, and programming: data science, machine learning, and artificial intelligence competencies and curricula for clinicians, informaticians, science journalists, and researchers.\",\"authors\":\"William R Hersh, Robert E Hoyt, Steven Chamberlin, Jessica S Ancker, Aditi Gupta, Tara B Borlawsky-Payne\",\"doi\":\"10.1080/20476965.2023.2237745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data science, machine learning and artificial intelligence applications impact clinicians, informaticians, science journalists, and researchers. Most biomedical data science training focuses on learning a programming language in addition to higher mathematics and advanced statistics. This approach is appropriate for graduate students but greatly reduces the number of individuals in healthcare who can be involved in data science. To serve these four stakeholder audiences, we describe several curricular strategies focusing on solving real problems of interest to these audiences. Relevant competencies for these audiences include using intuitive programming tools that facilitate data exploration with minimal programming background, creating data models, evaluating results of data analyses, and assessing data science research reports, among others. Offering the curricula described here more broadly could broaden the stakeholder groups knowledgeable about and engaged in data science.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20476965.2023.2237745\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2023.2237745","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Beyond mathematics, statistics, and programming: data science, machine learning, and artificial intelligence competencies and curricula for clinicians, informaticians, science journalists, and researchers.
Data science, machine learning and artificial intelligence applications impact clinicians, informaticians, science journalists, and researchers. Most biomedical data science training focuses on learning a programming language in addition to higher mathematics and advanced statistics. This approach is appropriate for graduate students but greatly reduces the number of individuals in healthcare who can be involved in data science. To serve these four stakeholder audiences, we describe several curricular strategies focusing on solving real problems of interest to these audiences. Relevant competencies for these audiences include using intuitive programming tools that facilitate data exploration with minimal programming background, creating data models, evaluating results of data analyses, and assessing data science research reports, among others. Offering the curricula described here more broadly could broaden the stakeholder groups knowledgeable about and engaged in data science.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.