Wei Li, Shanshan Wang, Weidong Xie, Kun Yu, Chaolu Feng
{"title":"基于WebGL的四层客户机-服务器架构的大规模医学图像在线三维重建","authors":"Wei Li, Shanshan Wang, Weidong Xie, Kun Yu, Chaolu Feng","doi":"10.1177/14738716221138090","DOIUrl":null,"url":null,"abstract":"The development of medical device technology has led to the rapid growth of medical imaging data. The reconstruction from two-dimensional images to three-dimensional volume visualization not only shows the location and shape of lesions from multiple views but also provides intuitive simulation for surgical treatment. However, the three-dimensional reconstruction process requires the high performance execution of image data acquisition and reconstruction algorithms, which limits the application to equipments with limited resources. Therefore, it is difficult to apply on many online scenarios, and mobile devices cannot meet high-performance hardware and software requirements. This paper proposes an online medical image rendering and real-time three-dimensional (3D) visualization method based on Web Graphics Library (WebGL). This method is based on a four-tier client-server architecture and uses the method of medical image data synchronization to reconstruct at both sides of the client and the server. The reconstruction method is designed to achieve the dual requirements of reconstruction speed and quality. The real-time 3D reconstruction visualization of large-scale medical images is tested in real environments. During the interaction with the reconstruction model, users can obtain the reconstructed results in real-time and observe and analyze it from all angles. The proposed four-tier client-server architecture will provide instant visual feedback and interactive information for many medical practitioners in collaborative therapy and tele-medicine applications. The experiments also show that the method of online 3D image reconstruction is applied in clinical practice on large scale image data while maintaining high reconstruction speed and quality.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":"22 1","pages":"100 - 114"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large scale medical image online three-dimensional reconstruction based on WebGL using four tier client server architecture\",\"authors\":\"Wei Li, Shanshan Wang, Weidong Xie, Kun Yu, Chaolu Feng\",\"doi\":\"10.1177/14738716221138090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of medical device technology has led to the rapid growth of medical imaging data. The reconstruction from two-dimensional images to three-dimensional volume visualization not only shows the location and shape of lesions from multiple views but also provides intuitive simulation for surgical treatment. However, the three-dimensional reconstruction process requires the high performance execution of image data acquisition and reconstruction algorithms, which limits the application to equipments with limited resources. Therefore, it is difficult to apply on many online scenarios, and mobile devices cannot meet high-performance hardware and software requirements. This paper proposes an online medical image rendering and real-time three-dimensional (3D) visualization method based on Web Graphics Library (WebGL). This method is based on a four-tier client-server architecture and uses the method of medical image data synchronization to reconstruct at both sides of the client and the server. The reconstruction method is designed to achieve the dual requirements of reconstruction speed and quality. The real-time 3D reconstruction visualization of large-scale medical images is tested in real environments. During the interaction with the reconstruction model, users can obtain the reconstructed results in real-time and observe and analyze it from all angles. The proposed four-tier client-server architecture will provide instant visual feedback and interactive information for many medical practitioners in collaborative therapy and tele-medicine applications. The experiments also show that the method of online 3D image reconstruction is applied in clinical practice on large scale image data while maintaining high reconstruction speed and quality.\",\"PeriodicalId\":50360,\"journal\":{\"name\":\"Information Visualization\",\"volume\":\"22 1\",\"pages\":\"100 - 114\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/14738716221138090\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716221138090","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Large scale medical image online three-dimensional reconstruction based on WebGL using four tier client server architecture
The development of medical device technology has led to the rapid growth of medical imaging data. The reconstruction from two-dimensional images to three-dimensional volume visualization not only shows the location and shape of lesions from multiple views but also provides intuitive simulation for surgical treatment. However, the three-dimensional reconstruction process requires the high performance execution of image data acquisition and reconstruction algorithms, which limits the application to equipments with limited resources. Therefore, it is difficult to apply on many online scenarios, and mobile devices cannot meet high-performance hardware and software requirements. This paper proposes an online medical image rendering and real-time three-dimensional (3D) visualization method based on Web Graphics Library (WebGL). This method is based on a four-tier client-server architecture and uses the method of medical image data synchronization to reconstruct at both sides of the client and the server. The reconstruction method is designed to achieve the dual requirements of reconstruction speed and quality. The real-time 3D reconstruction visualization of large-scale medical images is tested in real environments. During the interaction with the reconstruction model, users can obtain the reconstructed results in real-time and observe and analyze it from all angles. The proposed four-tier client-server architecture will provide instant visual feedback and interactive information for many medical practitioners in collaborative therapy and tele-medicine applications. The experiments also show that the method of online 3D image reconstruction is applied in clinical practice on large scale image data while maintaining high reconstruction speed and quality.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).