M. Bianchi, S. Collins, J. Ford, O. Wakefield, J. Dearlove, M. Swartz, A. Hughes
{"title":"使用数值模拟来测试对复杂分层含水层的地质和地下水概念理解:以诺森比亚菲尔砂岩为例","authors":"M. Bianchi, S. Collins, J. Ford, O. Wakefield, J. Dearlove, M. Swartz, A. Hughes","doi":"10.1144/qjegh2022-077","DOIUrl":null,"url":null,"abstract":"Groundwater abstractions from the Carboniferous Fell Sandstone, Northumbria, north-east England, provide water supply to the Berwick-upon-Tweed area. Management of these abstractions, totalling 6.5 Ml/day, by the water company along with the regulator for sustainability issues is required. Groundwater abstraction takes place from different sandstone units, which are separated by mudstones, with monitored groundwater heads showing variable responses to system stresses. To improve understanding of this complex system, various activities have been undertaken. Geological mapping and interpretation have been conducted to characterise the nature, geometry, and interconnection of the sandstone units, along with the superficial deposits. Recharge modelling has used to quantify inputs to the system and to understand the long-term water balance. A time-variant model has been implemented to simulate groundwater flow in the sandstone units and to quantify the groundwater balance. The work confirms that the Fell can be split into seven discrete sandstone units, separated by low permeability mudstones, but they are not necessarily laterally connected. There is a range of timescales of groundwater response to recharge events from slow (six months) to very rapid (∼1 day). These findings confirm the complexity of this groundwater system and offer lessons for similar sandstone systems in the UK and worldwide. Thematic collection: This article is part of the Hydrogeology of Sandstone collection available at: https://www.lyellcollection.org/cc/hydrogeology-of-sandstone","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using numerical modelling to test the geological and groundwater conceptual understanding of a complex, layered aquifer: A case study from the Fell Sandstone, Northumbria\",\"authors\":\"M. Bianchi, S. Collins, J. Ford, O. Wakefield, J. Dearlove, M. Swartz, A. Hughes\",\"doi\":\"10.1144/qjegh2022-077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater abstractions from the Carboniferous Fell Sandstone, Northumbria, north-east England, provide water supply to the Berwick-upon-Tweed area. Management of these abstractions, totalling 6.5 Ml/day, by the water company along with the regulator for sustainability issues is required. Groundwater abstraction takes place from different sandstone units, which are separated by mudstones, with monitored groundwater heads showing variable responses to system stresses. To improve understanding of this complex system, various activities have been undertaken. Geological mapping and interpretation have been conducted to characterise the nature, geometry, and interconnection of the sandstone units, along with the superficial deposits. Recharge modelling has used to quantify inputs to the system and to understand the long-term water balance. A time-variant model has been implemented to simulate groundwater flow in the sandstone units and to quantify the groundwater balance. The work confirms that the Fell can be split into seven discrete sandstone units, separated by low permeability mudstones, but they are not necessarily laterally connected. There is a range of timescales of groundwater response to recharge events from slow (six months) to very rapid (∼1 day). These findings confirm the complexity of this groundwater system and offer lessons for similar sandstone systems in the UK and worldwide. Thematic collection: This article is part of the Hydrogeology of Sandstone collection available at: https://www.lyellcollection.org/cc/hydrogeology-of-sandstone\",\"PeriodicalId\":20937,\"journal\":{\"name\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2022-077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2022-077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Using numerical modelling to test the geological and groundwater conceptual understanding of a complex, layered aquifer: A case study from the Fell Sandstone, Northumbria
Groundwater abstractions from the Carboniferous Fell Sandstone, Northumbria, north-east England, provide water supply to the Berwick-upon-Tweed area. Management of these abstractions, totalling 6.5 Ml/day, by the water company along with the regulator for sustainability issues is required. Groundwater abstraction takes place from different sandstone units, which are separated by mudstones, with monitored groundwater heads showing variable responses to system stresses. To improve understanding of this complex system, various activities have been undertaken. Geological mapping and interpretation have been conducted to characterise the nature, geometry, and interconnection of the sandstone units, along with the superficial deposits. Recharge modelling has used to quantify inputs to the system and to understand the long-term water balance. A time-variant model has been implemented to simulate groundwater flow in the sandstone units and to quantify the groundwater balance. The work confirms that the Fell can be split into seven discrete sandstone units, separated by low permeability mudstones, but they are not necessarily laterally connected. There is a range of timescales of groundwater response to recharge events from slow (six months) to very rapid (∼1 day). These findings confirm the complexity of this groundwater system and offer lessons for similar sandstone systems in the UK and worldwide. Thematic collection: This article is part of the Hydrogeology of Sandstone collection available at: https://www.lyellcollection.org/cc/hydrogeology-of-sandstone
期刊介绍:
Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House.
Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards.
The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.