D. Şahin, M. Öz, E. Sertaşi, Ünal Öz, Z. Karslı, O. Aral
{"title":"天然矿物(沸石和膨润土)在适合水产养殖的不同水温下对氮化合物的吸附性能评价","authors":"D. Şahin, M. Öz, E. Sertaşi, Ünal Öz, Z. Karslı, O. Aral","doi":"10.18052/WWW.SCIPRESS.COM/ILNS.71.34","DOIUrl":null,"url":null,"abstract":"In this study, it was aimed to determine the effects of zeolite and bentonite on the ammonium adsorption at different temperatures. In this research three trial groups with 3 repetitions were created for three different water temperatures (18±0.1°C, 24±0.0°C, 27±0.0°C). Experimental groups were prepared by adding NH4+amount of 10.5 mg/l in 2 liters of water. After that, zeolite, zeolite+bentonite and bentonite were added into the bottles as 10 gram per liter. Water temperature, pH and TAN (Total Ammonium Nitrogen) values were determined during the trial period. At the end of trial TAN values at 27 °C were recorded as 10.103±0.11 mg/l, 9.227±0.13 mg/l and 7.933±0.17 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. At the end of trial TAN values at 24 °C were recorded as 10.027±0.17 mg/l, 9.282±0.15 mg/l and 8.336±0.15 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. At the end of trial TAN values at 18 °C were recorded as 9.012±0.28 mg/l, 7.702±0.14 mg/l and 6.594±0.14 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. Maximum ammonium removal capacity, qe, was found to be 0.50 mg/g in the bentonite (18 °C). The TAN values determined at 18 °C were statistically more significant (p<0.05) than the TAN values obtained at 24 °C and 27 °C.","PeriodicalId":14407,"journal":{"name":"International Letters of Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Evaluation of Natural Minerals (Zeolite and Bentonite) for Nitrogen Compounds Adsorption in Different Water Temperatures Suitable for Aquaculture\",\"authors\":\"D. Şahin, M. Öz, E. Sertaşi, Ünal Öz, Z. Karslı, O. Aral\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/ILNS.71.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, it was aimed to determine the effects of zeolite and bentonite on the ammonium adsorption at different temperatures. In this research three trial groups with 3 repetitions were created for three different water temperatures (18±0.1°C, 24±0.0°C, 27±0.0°C). Experimental groups were prepared by adding NH4+amount of 10.5 mg/l in 2 liters of water. After that, zeolite, zeolite+bentonite and bentonite were added into the bottles as 10 gram per liter. Water temperature, pH and TAN (Total Ammonium Nitrogen) values were determined during the trial period. At the end of trial TAN values at 27 °C were recorded as 10.103±0.11 mg/l, 9.227±0.13 mg/l and 7.933±0.17 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. At the end of trial TAN values at 24 °C were recorded as 10.027±0.17 mg/l, 9.282±0.15 mg/l and 8.336±0.15 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. At the end of trial TAN values at 18 °C were recorded as 9.012±0.28 mg/l, 7.702±0.14 mg/l and 6.594±0.14 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. Maximum ammonium removal capacity, qe, was found to be 0.50 mg/g in the bentonite (18 °C). The TAN values determined at 18 °C were statistically more significant (p<0.05) than the TAN values obtained at 24 °C and 27 °C.\",\"PeriodicalId\":14407,\"journal\":{\"name\":\"International Letters of Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Letters of Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.71.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.71.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Natural Minerals (Zeolite and Bentonite) for Nitrogen Compounds Adsorption in Different Water Temperatures Suitable for Aquaculture
In this study, it was aimed to determine the effects of zeolite and bentonite on the ammonium adsorption at different temperatures. In this research three trial groups with 3 repetitions were created for three different water temperatures (18±0.1°C, 24±0.0°C, 27±0.0°C). Experimental groups were prepared by adding NH4+amount of 10.5 mg/l in 2 liters of water. After that, zeolite, zeolite+bentonite and bentonite were added into the bottles as 10 gram per liter. Water temperature, pH and TAN (Total Ammonium Nitrogen) values were determined during the trial period. At the end of trial TAN values at 27 °C were recorded as 10.103±0.11 mg/l, 9.227±0.13 mg/l and 7.933±0.17 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. At the end of trial TAN values at 24 °C were recorded as 10.027±0.17 mg/l, 9.282±0.15 mg/l and 8.336±0.15 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. At the end of trial TAN values at 18 °C were recorded as 9.012±0.28 mg/l, 7.702±0.14 mg/l and 6.594±0.14 mg/l in zeolite, zeolite+bentonite and bentonite groups, respectively. Maximum ammonium removal capacity, qe, was found to be 0.50 mg/g in the bentonite (18 °C). The TAN values determined at 18 °C were statistically more significant (p<0.05) than the TAN values obtained at 24 °C and 27 °C.