Daniela Fonseca, Ana C. Amorim, Elisabete P. Carreiro, J. Ramalho, G. Hermann, H. Federsel, A. Duarte, A. Burke
{"title":"甜菜碱衍生的深度共晶溶剂中可持续的有机催化对映选择性催化Michael加成","authors":"Daniela Fonseca, Ana C. Amorim, Elisabete P. Carreiro, J. Ramalho, G. Hermann, H. Federsel, A. Duarte, A. Burke","doi":"10.1055/a-2117-9971","DOIUrl":null,"url":null,"abstract":"The catalyst cinchonidine-squaramide was immobilized within three different deep eutectic solvents (DES): (Betaine: D-Sorbitol: Water), (Betaine: D-Xylitol: Water) and (Betaine: D-Mannitol: Water) and evaluated in a well-known asymmetric Michael addition. These reactions provided excellent yields (up to 99%) and enantioselectivities (up to 98%) using only 1 mol% of catalyst. It was also possible to achieve 9 cycles in reactions with DES (Betaine: D-Sorbitol: Water), proving the high recyclability of this system. In the reactions realized with only 0.5 mol% of catalyst, it was possible to achieve 5 cycles and the products were obtained with high yields (up to 95%) and excellent enantioselectivities (up to 94%), using DES (Betaine: D-Sorbitol: Water).","PeriodicalId":22135,"journal":{"name":"SynOpen","volume":"07 1","pages":"374 - 380"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sustainable Organocatalyzed Enantioselective Catalytic Michael Additions in Betaine-Derived Deep Eutectic Solvents\",\"authors\":\"Daniela Fonseca, Ana C. Amorim, Elisabete P. Carreiro, J. Ramalho, G. Hermann, H. Federsel, A. Duarte, A. Burke\",\"doi\":\"10.1055/a-2117-9971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalyst cinchonidine-squaramide was immobilized within three different deep eutectic solvents (DES): (Betaine: D-Sorbitol: Water), (Betaine: D-Xylitol: Water) and (Betaine: D-Mannitol: Water) and evaluated in a well-known asymmetric Michael addition. These reactions provided excellent yields (up to 99%) and enantioselectivities (up to 98%) using only 1 mol% of catalyst. It was also possible to achieve 9 cycles in reactions with DES (Betaine: D-Sorbitol: Water), proving the high recyclability of this system. In the reactions realized with only 0.5 mol% of catalyst, it was possible to achieve 5 cycles and the products were obtained with high yields (up to 95%) and excellent enantioselectivities (up to 94%), using DES (Betaine: D-Sorbitol: Water).\",\"PeriodicalId\":22135,\"journal\":{\"name\":\"SynOpen\",\"volume\":\"07 1\",\"pages\":\"374 - 380\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SynOpen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2117-9971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SynOpen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2117-9971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Sustainable Organocatalyzed Enantioselective Catalytic Michael Additions in Betaine-Derived Deep Eutectic Solvents
The catalyst cinchonidine-squaramide was immobilized within three different deep eutectic solvents (DES): (Betaine: D-Sorbitol: Water), (Betaine: D-Xylitol: Water) and (Betaine: D-Mannitol: Water) and evaluated in a well-known asymmetric Michael addition. These reactions provided excellent yields (up to 99%) and enantioselectivities (up to 98%) using only 1 mol% of catalyst. It was also possible to achieve 9 cycles in reactions with DES (Betaine: D-Sorbitol: Water), proving the high recyclability of this system. In the reactions realized with only 0.5 mol% of catalyst, it was possible to achieve 5 cycles and the products were obtained with high yields (up to 95%) and excellent enantioselectivities (up to 94%), using DES (Betaine: D-Sorbitol: Water).