具有势的颤抖子的范畴和K-理论HALL代数

IF 1.1 2区 数学 Q1 MATHEMATICS
Tudor Pădurariu
{"title":"具有势的颤抖子的范畴和K-理论HALL代数","authors":"Tudor Pădurariu","doi":"10.1017/S1474748022000111","DOIUrl":null,"url":null,"abstract":"Abstract Given a quiver with potential \n$(Q,W)$\n , Kontsevich–Soibelman constructed a cohomological Hall algebra (CoHA) on the critical cohomology of the stack of representations of \n$(Q,W)$\n . Special cases of this construction are related to work of Nakajima, Varagnolo, Schiffmann–Vasserot, Maulik–Okounkov, Yang–Zhao, etc. about geometric constructions of Yangians and their representations; indeed, given a quiver Q, there exists an associated pair \n$(\\widetilde{Q}, \\widetilde{W})$\n whose CoHA is conjecturally the positive half of the Maulik–Okounkov Yangian \n$Y_{\\text {MO}}(\\mathfrak {g}_{Q})$\n . For a quiver with potential \n$(Q,W)$\n , we follow a suggestion of Kontsevich–Soibelman and study a categorification of the above algebra constructed using categories of singularities. Its Grothendieck group is a K-theoretic Hall algebra (KHA) for quivers with potential. We construct representations using framed quivers, and we prove a wall-crossing theorem for KHAs. We expect the KHA for \n$(\\widetilde{Q}, \\widetilde{W})$\n to recover the positive part of quantum affine algebra \n$U_{q}(\\widehat {\\mathfrak {g}_{Q}})$\n defined by Okounkov–Smirnov.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"22 1","pages":"2717 - 2747"},"PeriodicalIF":1.1000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"CATEGORICAL AND K-THEORETIC HALL ALGEBRAS FOR QUIVERS WITH POTENTIAL\",\"authors\":\"Tudor Pădurariu\",\"doi\":\"10.1017/S1474748022000111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a quiver with potential \\n$(Q,W)$\\n , Kontsevich–Soibelman constructed a cohomological Hall algebra (CoHA) on the critical cohomology of the stack of representations of \\n$(Q,W)$\\n . Special cases of this construction are related to work of Nakajima, Varagnolo, Schiffmann–Vasserot, Maulik–Okounkov, Yang–Zhao, etc. about geometric constructions of Yangians and their representations; indeed, given a quiver Q, there exists an associated pair \\n$(\\\\widetilde{Q}, \\\\widetilde{W})$\\n whose CoHA is conjecturally the positive half of the Maulik–Okounkov Yangian \\n$Y_{\\\\text {MO}}(\\\\mathfrak {g}_{Q})$\\n . For a quiver with potential \\n$(Q,W)$\\n , we follow a suggestion of Kontsevich–Soibelman and study a categorification of the above algebra constructed using categories of singularities. Its Grothendieck group is a K-theoretic Hall algebra (KHA) for quivers with potential. We construct representations using framed quivers, and we prove a wall-crossing theorem for KHAs. We expect the KHA for \\n$(\\\\widetilde{Q}, \\\\widetilde{W})$\\n to recover the positive part of quantum affine algebra \\n$U_{q}(\\\\widehat {\\\\mathfrak {g}_{Q}})$\\n defined by Okounkov–Smirnov.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"22 1\",\"pages\":\"2717 - 2747\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1474748022000111\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1474748022000111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

摘要

摘要在给定具有势$(Q,W)$的颤动的情况下,Kontsevich–Soibelman在$(Q、W)$表示栈的临界上同调上构造了一个上同调Hall代数(CoHA)。这种构造的特殊情况与Nakajima、Varagnolo、Schiffmann–Vasselot、Maulik–Okounkov、Yang–赵等关于Yangians几何构造及其表征的工作有关;事实上,给定一个颤动Q,存在一个关联对$(\widetilde{Q},\widetide{W})$,其CoHA推测为Maulik–Okounkov Yangian$Y_{\text{MO}}的正半部分(\mathfrak{g}_{Q} )$。对于势为$(Q,W)$的颤动,我们遵循Kontsevich–Soibelman的建议,研究了用奇点类构造的上述代数的分类。它的Grothendieck群是具有势的颤动的K理论Hall代数(KHA)。我们使用框架颤动构造表示,并证明了KHA的一个穿墙定理。我们期望$(\widetilde{Q},\widetide{W})$的KHA恢复量子仿射代数$U_{Q}(\widehat{\mathfrak{g}_{Q} })$由Okounkov–Smirnov定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CATEGORICAL AND K-THEORETIC HALL ALGEBRAS FOR QUIVERS WITH POTENTIAL
Abstract Given a quiver with potential $(Q,W)$ , Kontsevich–Soibelman constructed a cohomological Hall algebra (CoHA) on the critical cohomology of the stack of representations of $(Q,W)$ . Special cases of this construction are related to work of Nakajima, Varagnolo, Schiffmann–Vasserot, Maulik–Okounkov, Yang–Zhao, etc. about geometric constructions of Yangians and their representations; indeed, given a quiver Q, there exists an associated pair $(\widetilde{Q}, \widetilde{W})$ whose CoHA is conjecturally the positive half of the Maulik–Okounkov Yangian $Y_{\text {MO}}(\mathfrak {g}_{Q})$ . For a quiver with potential $(Q,W)$ , we follow a suggestion of Kontsevich–Soibelman and study a categorification of the above algebra constructed using categories of singularities. Its Grothendieck group is a K-theoretic Hall algebra (KHA) for quivers with potential. We construct representations using framed quivers, and we prove a wall-crossing theorem for KHAs. We expect the KHA for $(\widetilde{Q}, \widetilde{W})$ to recover the positive part of quantum affine algebra $U_{q}(\widehat {\mathfrak {g}_{Q}})$ defined by Okounkov–Smirnov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信