基于角度计算的分布式群体避碰算法

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
SeyedZahir Qazavi, Samaneh Hosseini Semnani
{"title":"基于角度计算的分布式群体避碰算法","authors":"SeyedZahir Qazavi,&nbsp;Samaneh Hosseini Semnani","doi":"10.1007/s10514-022-10081-6","DOIUrl":null,"url":null,"abstract":"<div><p>Collision avoidance is one of the most important topics in the robotics field. In this problem, the goal is to move the robots from initial locations to target locations such that they follow the shortest non-colliding paths in the shortest time and with the least amount of energy. Robot navigation among pedestrians is an example application of this problem which is the focus of this paper. This paper presents a distributed and real-time algorithm for solving collision avoidance problems in dense and complex 2D and 3D environments. This algorithm uses angular calculations to select the optimal direction for the movement of each robot and it has been shown that these separate calculations lead to a form of cooperative behavior among agents. We evaluated the proposed approach on various simulation and experimental scenarios and compared the results with ORCA one of the most important algorithms in this field. The results show that the proposed approach is at least 25% faster than ORCA while is also more reliable. The proposed method is shown to enable fully autonomous navigation of a swarm of Crazyflies.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 4","pages":"425 - 434"},"PeriodicalIF":3.7000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed swarm collision avoidance based on angular calculations\",\"authors\":\"SeyedZahir Qazavi,&nbsp;Samaneh Hosseini Semnani\",\"doi\":\"10.1007/s10514-022-10081-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Collision avoidance is one of the most important topics in the robotics field. In this problem, the goal is to move the robots from initial locations to target locations such that they follow the shortest non-colliding paths in the shortest time and with the least amount of energy. Robot navigation among pedestrians is an example application of this problem which is the focus of this paper. This paper presents a distributed and real-time algorithm for solving collision avoidance problems in dense and complex 2D and 3D environments. This algorithm uses angular calculations to select the optimal direction for the movement of each robot and it has been shown that these separate calculations lead to a form of cooperative behavior among agents. We evaluated the proposed approach on various simulation and experimental scenarios and compared the results with ORCA one of the most important algorithms in this field. The results show that the proposed approach is at least 25% faster than ORCA while is also more reliable. The proposed method is shown to enable fully autonomous navigation of a swarm of Crazyflies.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"47 4\",\"pages\":\"425 - 434\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-022-10081-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-022-10081-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

避免碰撞是机器人领域中最重要的课题之一。在这个问题中,目标是将机器人从初始位置移动到目标位置,以便它们在最短的时间内以最少的能量遵循最短的非碰撞路径。机器人在行人中的导航是该问题的一个应用实例,也是本文的重点。本文提出了一种分布式实时算法,用于解决密集复杂的二维和三维环境中的防撞问题。该算法使用角度计算来选择每个机器人运动的最佳方向,并且已经表明,这些单独的计算会导致代理之间的某种形式的协作行为。我们在各种模拟和实验场景中评估了所提出的方法,并将结果与该领域最重要的算法之一ORCA进行了比较。结果表明,所提出的方法比ORCA至少快25%,同时也更可靠。所提出的方法被证明能够实现Crazyflies群的完全自主导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed swarm collision avoidance based on angular calculations

Collision avoidance is one of the most important topics in the robotics field. In this problem, the goal is to move the robots from initial locations to target locations such that they follow the shortest non-colliding paths in the shortest time and with the least amount of energy. Robot navigation among pedestrians is an example application of this problem which is the focus of this paper. This paper presents a distributed and real-time algorithm for solving collision avoidance problems in dense and complex 2D and 3D environments. This algorithm uses angular calculations to select the optimal direction for the movement of each robot and it has been shown that these separate calculations lead to a form of cooperative behavior among agents. We evaluated the proposed approach on various simulation and experimental scenarios and compared the results with ORCA one of the most important algorithms in this field. The results show that the proposed approach is at least 25% faster than ORCA while is also more reliable. The proposed method is shown to enable fully autonomous navigation of a swarm of Crazyflies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信