Arturo Silva-Campillo , J.C. Suárez-Bermejo , M.A. Herreros-Sierra
{"title":"局部剪切对船舶结构疲劳强度评定的影响","authors":"Arturo Silva-Campillo , J.C. Suárez-Bermejo , M.A. Herreros-Sierra","doi":"10.1016/j.ijnaoe.2022.100508","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the work is to evaluate different design alternatives to obtain criteria for the selection of the most effective design by fatigue strength assessment of the local cut-out as a result of the connection between the longitudinal or ordinary stiffener and the transverse web frame (longi-web) in the side hull structure (upper wing torsional box), very important area due to its high stress concentration, of a container vessel, one of the most important ships in terms of its influence on the world economy. Structural solutions and design guidelines are established, by means of numerical models validated by experimental tests, which allow alternative designs to be obtained that improve their fatigue behaviour. Standard cut-out geometries are studied under the presence of different variables (radius of curvature, longitudinal spacing, longitudinal stiffener cross-section, and flange arrangement) that are evaluated to determine their effect in the structural assessment (fatigue damage, stress concentration, and fracture mechanics) and the weight comparison between alternatives.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"15 ","pages":"Article 100508"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of local cut-out on fatigue strength assessment in ship structures\",\"authors\":\"Arturo Silva-Campillo , J.C. Suárez-Bermejo , M.A. Herreros-Sierra\",\"doi\":\"10.1016/j.ijnaoe.2022.100508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the work is to evaluate different design alternatives to obtain criteria for the selection of the most effective design by fatigue strength assessment of the local cut-out as a result of the connection between the longitudinal or ordinary stiffener and the transverse web frame (longi-web) in the side hull structure (upper wing torsional box), very important area due to its high stress concentration, of a container vessel, one of the most important ships in terms of its influence on the world economy. Structural solutions and design guidelines are established, by means of numerical models validated by experimental tests, which allow alternative designs to be obtained that improve their fatigue behaviour. Standard cut-out geometries are studied under the presence of different variables (radius of curvature, longitudinal spacing, longitudinal stiffener cross-section, and flange arrangement) that are evaluated to determine their effect in the structural assessment (fatigue damage, stress concentration, and fracture mechanics) and the weight comparison between alternatives.</p></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"15 \",\"pages\":\"Article 100508\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678222000747\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678222000747","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Effect of local cut-out on fatigue strength assessment in ship structures
The aim of the work is to evaluate different design alternatives to obtain criteria for the selection of the most effective design by fatigue strength assessment of the local cut-out as a result of the connection between the longitudinal or ordinary stiffener and the transverse web frame (longi-web) in the side hull structure (upper wing torsional box), very important area due to its high stress concentration, of a container vessel, one of the most important ships in terms of its influence on the world economy. Structural solutions and design guidelines are established, by means of numerical models validated by experimental tests, which allow alternative designs to be obtained that improve their fatigue behaviour. Standard cut-out geometries are studied under the presence of different variables (radius of curvature, longitudinal spacing, longitudinal stiffener cross-section, and flange arrangement) that are evaluated to determine their effect in the structural assessment (fatigue damage, stress concentration, and fracture mechanics) and the weight comparison between alternatives.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.