用遥感方法估算稻田土壤有机质

IF 0.5 Q4 AGRONOMY
Luthfan Nur Habibi, K. Komariah, D. Ariyanto, J. Syamsiyah, Takashi S. T. Tanaka
{"title":"用遥感方法估算稻田土壤有机质","authors":"Luthfan Nur Habibi, K. Komariah, D. Ariyanto, J. Syamsiyah, Takashi S. T. Tanaka","doi":"10.20961/stjssa.v16i2.35395","DOIUrl":null,"url":null,"abstract":"Soil organic matter (SOM) is one of the important parameters in agriculture management, thus estimating its distribution on the land will be essential. Remote sensing can be utilized to map the SOM distribution in the large-scale area. The objective of this research was to determine the estimation of SOM distribution on the paddy field in Sukoharjo Regency, Indonesia using Landsat 8 OLI imagery. The sampling points were determined by purposive sampling based on an overlay of land use classification map of paddy field, NDSI (Normalized Difference Soil Index) map, and soil type map. The analysis method was used simple linear regression (SLR) and multiple linear regression (MLR) between SOM content and a digital number of Landsat 8 OLI imagery. The SLR analysis resulted that all band except band 1 and 5 of Landsat 8 OLI Imagery have the capability to estimating SOM. The MLR model based on best subset analysis resulted in the combination of bands 3, 4, 6, and 7 was the best model for estimating SOM distribution (R 2 =0.399).  The MLR model was used to create SOM distribution map on paddy field in Sukoharjo Regency and resulted in the SOM range of the area is distributed from very low (<1%) to moderate (2.1–4.2%) with the largest area was on low level (1–2%) about 11,028 ha. The result indicates that Landsat 8 OLI Imagery could be used for mapping the SOM distribution.","PeriodicalId":36463,"journal":{"name":"Sains Tanah","volume":"16 1","pages":"159-168"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of Soil Organic Matter on Paddy Field using Remote Sensing Method\",\"authors\":\"Luthfan Nur Habibi, K. Komariah, D. Ariyanto, J. Syamsiyah, Takashi S. T. Tanaka\",\"doi\":\"10.20961/stjssa.v16i2.35395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil organic matter (SOM) is one of the important parameters in agriculture management, thus estimating its distribution on the land will be essential. Remote sensing can be utilized to map the SOM distribution in the large-scale area. The objective of this research was to determine the estimation of SOM distribution on the paddy field in Sukoharjo Regency, Indonesia using Landsat 8 OLI imagery. The sampling points were determined by purposive sampling based on an overlay of land use classification map of paddy field, NDSI (Normalized Difference Soil Index) map, and soil type map. The analysis method was used simple linear regression (SLR) and multiple linear regression (MLR) between SOM content and a digital number of Landsat 8 OLI imagery. The SLR analysis resulted that all band except band 1 and 5 of Landsat 8 OLI Imagery have the capability to estimating SOM. The MLR model based on best subset analysis resulted in the combination of bands 3, 4, 6, and 7 was the best model for estimating SOM distribution (R 2 =0.399).  The MLR model was used to create SOM distribution map on paddy field in Sukoharjo Regency and resulted in the SOM range of the area is distributed from very low (<1%) to moderate (2.1–4.2%) with the largest area was on low level (1–2%) about 11,028 ha. The result indicates that Landsat 8 OLI Imagery could be used for mapping the SOM distribution.\",\"PeriodicalId\":36463,\"journal\":{\"name\":\"Sains Tanah\",\"volume\":\"16 1\",\"pages\":\"159-168\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sains Tanah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20961/stjssa.v16i2.35395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains Tanah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/stjssa.v16i2.35395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

摘要

土壤有机质(SOM)是农业管理中的重要参数之一,因此估计其在土地上的分布至关重要。遥感可用于绘制SOM在大面积区域的分布图。本研究的目的是使用Landsat 8 OLI图像来确定印度尼西亚Sukoharjo Regency稻田SOM分布的估计值。在稻田土地利用分类图、NDSI(Normalized Difference Soil Index,归一化差异土壤指数)图和土壤类型图的基础上,通过有针对性的采样确定采样点。该分析方法使用了SOM含量与Landsat 8 OLI图像数字数量之间的简单线性回归(SLR)和多元线性回归(MLR)。SLR分析表明,陆地卫星8号OLI影像除1、5波段外,其余波段均具有SOM估计能力。基于最佳子集分析的MLR模型导致了频带3、4、6、7的组合,用MLR模型绘制了苏霍哈尔乔县稻田SOM分布图,结果表明该区SOM分布范围从极低(<1%)到中等(2.1-4.2%),最大面积为低水平(1-2%),约11028ha。结果表明,陆地卫星8号OLI成像可用于绘制SOM分布图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Soil Organic Matter on Paddy Field using Remote Sensing Method
Soil organic matter (SOM) is one of the important parameters in agriculture management, thus estimating its distribution on the land will be essential. Remote sensing can be utilized to map the SOM distribution in the large-scale area. The objective of this research was to determine the estimation of SOM distribution on the paddy field in Sukoharjo Regency, Indonesia using Landsat 8 OLI imagery. The sampling points were determined by purposive sampling based on an overlay of land use classification map of paddy field, NDSI (Normalized Difference Soil Index) map, and soil type map. The analysis method was used simple linear regression (SLR) and multiple linear regression (MLR) between SOM content and a digital number of Landsat 8 OLI imagery. The SLR analysis resulted that all band except band 1 and 5 of Landsat 8 OLI Imagery have the capability to estimating SOM. The MLR model based on best subset analysis resulted in the combination of bands 3, 4, 6, and 7 was the best model for estimating SOM distribution (R 2 =0.399).  The MLR model was used to create SOM distribution map on paddy field in Sukoharjo Regency and resulted in the SOM range of the area is distributed from very low (<1%) to moderate (2.1–4.2%) with the largest area was on low level (1–2%) about 11,028 ha. The result indicates that Landsat 8 OLI Imagery could be used for mapping the SOM distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sains Tanah
Sains Tanah Environmental Science-Pollution
CiteScore
1.90
自引率
0.00%
发文量
16
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信