{"title":"创建大规模历时语料库资源:希腊纸莎草书中的自动解析(及其后)","authors":"Alek Keersmaekers, Toon van Hal","doi":"10.1017/s1351324923000384","DOIUrl":null,"url":null,"abstract":"\n This paper explores how to syntactically parse Ancient Greek texts automatically and maps ways of fruitfully employing the results of such an automated analysis. Special attention is given to documentary papyrus texts, a large diachronic corpus of non-literary Greek, which presents a unique set of challenges to tackle. By making use of the Stanford Graph-Based Neural Dependency Parser, we show that through careful curation of the parsing data and several manipulation strategies, it is possible to achieve an Labeled Attachment Score of about 0.85 for this corpus. We also explain how the data can be converted back to its original (Ancient Greek Dependency Treebanks) format. We describe the results of several tests we have carried out to improve parsing results, with special attention paid to the impact of the annotation format on parser achievements. In addition, we offer a detailed qualitative analysis of the remaining errors, including possible ways to solve them. Moreover, the paper gives an overview of the valorisation possibilities of an automatically annotated corpus of Ancient Greek texts in the fields of linguistics, language education and humanities studies in general. The concluding section critically analyses the remaining difficulties and outlines avenues to further improve the parsing quality and the ensuing practical applications.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating a large-scale diachronic corpus resource: Automated parsing in the Greek papyri (and beyond)\",\"authors\":\"Alek Keersmaekers, Toon van Hal\",\"doi\":\"10.1017/s1351324923000384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper explores how to syntactically parse Ancient Greek texts automatically and maps ways of fruitfully employing the results of such an automated analysis. Special attention is given to documentary papyrus texts, a large diachronic corpus of non-literary Greek, which presents a unique set of challenges to tackle. By making use of the Stanford Graph-Based Neural Dependency Parser, we show that through careful curation of the parsing data and several manipulation strategies, it is possible to achieve an Labeled Attachment Score of about 0.85 for this corpus. We also explain how the data can be converted back to its original (Ancient Greek Dependency Treebanks) format. We describe the results of several tests we have carried out to improve parsing results, with special attention paid to the impact of the annotation format on parser achievements. In addition, we offer a detailed qualitative analysis of the remaining errors, including possible ways to solve them. Moreover, the paper gives an overview of the valorisation possibilities of an automatically annotated corpus of Ancient Greek texts in the fields of linguistics, language education and humanities studies in general. The concluding section critically analyses the remaining difficulties and outlines avenues to further improve the parsing quality and the ensuing practical applications.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1351324923000384\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324923000384","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Creating a large-scale diachronic corpus resource: Automated parsing in the Greek papyri (and beyond)
This paper explores how to syntactically parse Ancient Greek texts automatically and maps ways of fruitfully employing the results of such an automated analysis. Special attention is given to documentary papyrus texts, a large diachronic corpus of non-literary Greek, which presents a unique set of challenges to tackle. By making use of the Stanford Graph-Based Neural Dependency Parser, we show that through careful curation of the parsing data and several manipulation strategies, it is possible to achieve an Labeled Attachment Score of about 0.85 for this corpus. We also explain how the data can be converted back to its original (Ancient Greek Dependency Treebanks) format. We describe the results of several tests we have carried out to improve parsing results, with special attention paid to the impact of the annotation format on parser achievements. In addition, we offer a detailed qualitative analysis of the remaining errors, including possible ways to solve them. Moreover, the paper gives an overview of the valorisation possibilities of an automatically annotated corpus of Ancient Greek texts in the fields of linguistics, language education and humanities studies in general. The concluding section critically analyses the remaining difficulties and outlines avenues to further improve the parsing quality and the ensuing practical applications.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.