更强的算术等价

IF 1 3区 数学 Q1 MATHEMATICS
Andrew Sutherland
{"title":"更强的算术等价","authors":"Andrew Sutherland","doi":"10.19086/da.29452","DOIUrl":null,"url":null,"abstract":"Motivated by a recent result of Prasad, we consider three stronger notions of arithmetic equivalence: local integral equivalence, integral equivalence, and solvable equivalence. In addition to having the same Dedekind zeta function (the usual notion of arithmetic equivalence), number fields that are equivalent in any of these stronger senses must have the same class number, and solvable equivalence forces an isomorphism of adele rings. Until recently the only nontrivial example of integral and solvable equivalence arose from a group-theoretic construction of Scott that was exploited by Prasad. Here we provide infinitely many distinct examples of solvable equivalence, including a family that contains Scott's construction as well as an explicit example of degree 96. We also construct examples that address questions of Scott, and of Guralnick and Weiss, and shed some light on a question of Prasad.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stronger arithmetic equivalence\",\"authors\":\"Andrew Sutherland\",\"doi\":\"10.19086/da.29452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by a recent result of Prasad, we consider three stronger notions of arithmetic equivalence: local integral equivalence, integral equivalence, and solvable equivalence. In addition to having the same Dedekind zeta function (the usual notion of arithmetic equivalence), number fields that are equivalent in any of these stronger senses must have the same class number, and solvable equivalence forces an isomorphism of adele rings. Until recently the only nontrivial example of integral and solvable equivalence arose from a group-theoretic construction of Scott that was exploited by Prasad. Here we provide infinitely many distinct examples of solvable equivalence, including a family that contains Scott's construction as well as an explicit example of degree 96. We also construct examples that address questions of Scott, and of Guralnick and Weiss, and shed some light on a question of Prasad.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/da.29452\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/da.29452","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受Prasad最近的一个结果的启发,我们考虑了算术等价的三个更强的概念:局部积分等价、积分等价和可解等价。除了具有相同的Dedekind-zeta函数(算术等价的常见概念)外,在这些更强意义上等价的数域必须具有相同的类名,可解等价迫使adele环同构。直到最近,积分和可解等价的唯一不平凡的例子来自Prasad利用的Scott的群论构造。在这里,我们提供了无限多个可解等价的不同例子,包括一个包含斯科特构造的族,以及一个96度的显式例子。我们还构建了一些例子来解决斯科特、古拉尔尼克和维斯的问题,并对普拉萨德的问题进行了一些阐述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stronger arithmetic equivalence
Motivated by a recent result of Prasad, we consider three stronger notions of arithmetic equivalence: local integral equivalence, integral equivalence, and solvable equivalence. In addition to having the same Dedekind zeta function (the usual notion of arithmetic equivalence), number fields that are equivalent in any of these stronger senses must have the same class number, and solvable equivalence forces an isomorphism of adele rings. Until recently the only nontrivial example of integral and solvable equivalence arose from a group-theoretic construction of Scott that was exploited by Prasad. Here we provide infinitely many distinct examples of solvable equivalence, including a family that contains Scott's construction as well as an explicit example of degree 96. We also construct examples that address questions of Scott, and of Guralnick and Weiss, and shed some light on a question of Prasad.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信