Marco Cirant, D. Gomes, Edgard A. Pimentel, H. Sánchez-Morgado
{"title":"关于一些奇异平均场对策","authors":"Marco Cirant, D. Gomes, Edgard A. Pimentel, H. Sánchez-Morgado","doi":"10.3934/JDG.2021006","DOIUrl":null,"url":null,"abstract":"Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form \\begin{document}$ g(m) = -m^{- \\alpha} $\\end{document} with \\begin{document}$ \\alpha>0 $\\end{document} . We consider stationary and time-dependent settings. The function \\begin{document}$ g $\\end{document} is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents move towards low-density regions and, thus, prevents the creation of those regions. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that \\begin{document}$ \\frac 1 m $\\end{document} is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for \\begin{document}$ m^{-1} $\\end{document} .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On some singular mean-field games\",\"authors\":\"Marco Cirant, D. Gomes, Edgard A. Pimentel, H. Sánchez-Morgado\",\"doi\":\"10.3934/JDG.2021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form \\\\begin{document}$ g(m) = -m^{- \\\\alpha} $\\\\end{document} with \\\\begin{document}$ \\\\alpha>0 $\\\\end{document} . We consider stationary and time-dependent settings. The function \\\\begin{document}$ g $\\\\end{document} is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents move towards low-density regions and, thus, prevents the creation of those regions. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that \\\\begin{document}$ \\\\frac 1 m $\\\\end{document} is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for \\\\begin{document}$ m^{-1} $\\\\end{document} .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/JDG.2021006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JDG.2021006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form \begin{document}$ g(m) = -m^{- \alpha} $\end{document} with \begin{document}$ \alpha>0 $\end{document} . We consider stationary and time-dependent settings. The function \begin{document}$ g $\end{document} is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents move towards low-density regions and, thus, prevents the creation of those regions. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that \begin{document}$ \frac 1 m $\end{document} is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for \begin{document}$ m^{-1} $\end{document} .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.