{"title":"利用机器学习算法对摩洛哥Ourika流域洪水易感区进行空间预测","authors":"M. Meliho, A. Khattabi, Zejli Driss, C. Orlando","doi":"10.1108/aci-09-2021-0264","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of the paper is to predict mapping of areas vulnerable to flooding in the Ourika watershed in the High Atlas of Morocco with the aim of providing a useful tool capable of helping in the mitigation and management of floods in the associated region, as well as Morocco as a whole.Design/methodology/approachFour machine learning (ML) algorithms including k-nearest neighbors (KNN), artificial neural network, random forest (RF) and x-gradient boost (XGB) are adopted for modeling. Additionally, 16 predictors divided into categorical and numerical variables are used as inputs for modeling.FindingsThe results showed that RF and XGB were the best performing algorithms, with AUC scores of 99.1 and 99.2%, respectively. Conversely, KNN had the lowest predictive power, scoring 94.4%. Overall, the algorithms predicted that over 60% of the watershed was in the very low flood risk class, while the high flood risk class accounted for less than 15% of the area.Originality/valueThere are limited, if not non-existent studies on modeling using AI tools including ML in the region in predictive modeling of flooding, making this study intriguing.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":" ","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial prediction of flood-susceptible zones in the Ourika watershed of Morocco using machine learning algorithms\",\"authors\":\"M. Meliho, A. Khattabi, Zejli Driss, C. Orlando\",\"doi\":\"10.1108/aci-09-2021-0264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of the paper is to predict mapping of areas vulnerable to flooding in the Ourika watershed in the High Atlas of Morocco with the aim of providing a useful tool capable of helping in the mitigation and management of floods in the associated region, as well as Morocco as a whole.Design/methodology/approachFour machine learning (ML) algorithms including k-nearest neighbors (KNN), artificial neural network, random forest (RF) and x-gradient boost (XGB) are adopted for modeling. Additionally, 16 predictors divided into categorical and numerical variables are used as inputs for modeling.FindingsThe results showed that RF and XGB were the best performing algorithms, with AUC scores of 99.1 and 99.2%, respectively. Conversely, KNN had the lowest predictive power, scoring 94.4%. Overall, the algorithms predicted that over 60% of the watershed was in the very low flood risk class, while the high flood risk class accounted for less than 15% of the area.Originality/valueThere are limited, if not non-existent studies on modeling using AI tools including ML in the region in predictive modeling of flooding, making this study intriguing.\",\"PeriodicalId\":37348,\"journal\":{\"name\":\"Applied Computing and Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/aci-09-2021-0264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-09-2021-0264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Spatial prediction of flood-susceptible zones in the Ourika watershed of Morocco using machine learning algorithms
PurposeThe purpose of the paper is to predict mapping of areas vulnerable to flooding in the Ourika watershed in the High Atlas of Morocco with the aim of providing a useful tool capable of helping in the mitigation and management of floods in the associated region, as well as Morocco as a whole.Design/methodology/approachFour machine learning (ML) algorithms including k-nearest neighbors (KNN), artificial neural network, random forest (RF) and x-gradient boost (XGB) are adopted for modeling. Additionally, 16 predictors divided into categorical and numerical variables are used as inputs for modeling.FindingsThe results showed that RF and XGB were the best performing algorithms, with AUC scores of 99.1 and 99.2%, respectively. Conversely, KNN had the lowest predictive power, scoring 94.4%. Overall, the algorithms predicted that over 60% of the watershed was in the very low flood risk class, while the high flood risk class accounted for less than 15% of the area.Originality/valueThere are limited, if not non-existent studies on modeling using AI tools including ML in the region in predictive modeling of flooding, making this study intriguing.
期刊介绍:
Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.