{"title":"基于元表面全息多焦光束的多目标无线功率传输系统策略","authors":"Xiaonan Wu;Fuyao Hou;Yicen Li;Shihao Zhao;Song Zhang;Hao Xue;Mingyang Chang;Jiaqi Han;Haixia Liu;Long Li","doi":"10.1109/TMTT.2023.3260401","DOIUrl":null,"url":null,"abstract":"Aiming at the critical problem of wireless power transfer (WPT) for the current growing number of wireless devices, the multitarget WPT system based on metasurface-holography multifocal beams and the design methods is investigated and analyzed in this article. As the propagator in near-field synthesis, a new field calculation formula is derived based on the Friis formula between the metasurface unit (MU) and the field point, which breaks the limitation of paraxial approximation and makes metasurface holography applicable in a wide-angle, long-distance, and nonplane space. Besides the phase response of MUs, the amplitude response is also introduced, which achieves the simultaneous amplitude–phase optimization of the metasurface to improve transmission efficiency. A metasurface with holography multifocal beams is first designed and engaged in forming a planar multitarget WPT system, which has been proven to radiate the designed multifocal beam and transfer power to each focal spot uniformly and efficiently after simulated, fabricated, and measured. To verify that the proposed method can achieve a near-field synthesis of multifocal beams in nonplane space over a wide angular range, a metasurface with 23-focus beam distribution on a spherical surface with an elevation angle from −60° to 60°, omnidirectional azimuth, and \n<inline-formula> <tex-math>$66.67\\lambda $ </tex-math></inline-formula>\n radius is designed and simulated, which shows that the simulated radiation field distribution is in good agreement with the initial preset target field. This work demonstrates a feasible high-efficiency and long-distance WPT strategy for multiple targets in wide-angle and spatial scenarios.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"71 8","pages":"3479-3489"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multitarget Wireless Power Transfer System Strategy Based on Metasurface-Holography Multifocal Beams\",\"authors\":\"Xiaonan Wu;Fuyao Hou;Yicen Li;Shihao Zhao;Song Zhang;Hao Xue;Mingyang Chang;Jiaqi Han;Haixia Liu;Long Li\",\"doi\":\"10.1109/TMTT.2023.3260401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the critical problem of wireless power transfer (WPT) for the current growing number of wireless devices, the multitarget WPT system based on metasurface-holography multifocal beams and the design methods is investigated and analyzed in this article. As the propagator in near-field synthesis, a new field calculation formula is derived based on the Friis formula between the metasurface unit (MU) and the field point, which breaks the limitation of paraxial approximation and makes metasurface holography applicable in a wide-angle, long-distance, and nonplane space. Besides the phase response of MUs, the amplitude response is also introduced, which achieves the simultaneous amplitude–phase optimization of the metasurface to improve transmission efficiency. A metasurface with holography multifocal beams is first designed and engaged in forming a planar multitarget WPT system, which has been proven to radiate the designed multifocal beam and transfer power to each focal spot uniformly and efficiently after simulated, fabricated, and measured. To verify that the proposed method can achieve a near-field synthesis of multifocal beams in nonplane space over a wide angular range, a metasurface with 23-focus beam distribution on a spherical surface with an elevation angle from −60° to 60°, omnidirectional azimuth, and \\n<inline-formula> <tex-math>$66.67\\\\lambda $ </tex-math></inline-formula>\\n radius is designed and simulated, which shows that the simulated radiation field distribution is in good agreement with the initial preset target field. This work demonstrates a feasible high-efficiency and long-distance WPT strategy for multiple targets in wide-angle and spatial scenarios.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"71 8\",\"pages\":\"3479-3489\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10086987/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10086987/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multitarget Wireless Power Transfer System Strategy Based on Metasurface-Holography Multifocal Beams
Aiming at the critical problem of wireless power transfer (WPT) for the current growing number of wireless devices, the multitarget WPT system based on metasurface-holography multifocal beams and the design methods is investigated and analyzed in this article. As the propagator in near-field synthesis, a new field calculation formula is derived based on the Friis formula between the metasurface unit (MU) and the field point, which breaks the limitation of paraxial approximation and makes metasurface holography applicable in a wide-angle, long-distance, and nonplane space. Besides the phase response of MUs, the amplitude response is also introduced, which achieves the simultaneous amplitude–phase optimization of the metasurface to improve transmission efficiency. A metasurface with holography multifocal beams is first designed and engaged in forming a planar multitarget WPT system, which has been proven to radiate the designed multifocal beam and transfer power to each focal spot uniformly and efficiently after simulated, fabricated, and measured. To verify that the proposed method can achieve a near-field synthesis of multifocal beams in nonplane space over a wide angular range, a metasurface with 23-focus beam distribution on a spherical surface with an elevation angle from −60° to 60°, omnidirectional azimuth, and
$66.67\lambda $
radius is designed and simulated, which shows that the simulated radiation field distribution is in good agreement with the initial preset target field. This work demonstrates a feasible high-efficiency and long-distance WPT strategy for multiple targets in wide-angle and spatial scenarios.
期刊介绍:
The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.