关于Gompertz寿命差距的一个闭式表达式及其逼近

IF 2.1 3区 社会学 Q2 DEMOGRAPHY
Cinzia Di Palo
{"title":"关于Gompertz寿命差距的一个闭式表达式及其逼近","authors":"Cinzia Di Palo","doi":"10.4054/demres.2023.49.1","DOIUrl":null,"url":null,"abstract":"BACKGROUND In the literature, there exists a closed form solution to the remaining life expectancy at age x when mortality is governed by the Gompertz law. This expression contains a special function that allows us to construct high-accuracy approximations, which are also helpful in assessing the elasticity of life expectancy with respect to the model parameters. However, to my knowledge, a similar formulation for life disparity does not exist, and as a consequence, it does not exist for life table entropy either.","PeriodicalId":48242,"journal":{"name":"Demographic Research","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a closed-form expression and its approximation to Gompertz life disparity\",\"authors\":\"Cinzia Di Palo\",\"doi\":\"10.4054/demres.2023.49.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND In the literature, there exists a closed form solution to the remaining life expectancy at age x when mortality is governed by the Gompertz law. This expression contains a special function that allows us to construct high-accuracy approximations, which are also helpful in assessing the elasticity of life expectancy with respect to the model parameters. However, to my knowledge, a similar formulation for life disparity does not exist, and as a consequence, it does not exist for life table entropy either.\",\"PeriodicalId\":48242,\"journal\":{\"name\":\"Demographic Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demographic Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.4054/demres.2023.49.1\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demographic Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.4054/demres.2023.49.1","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

在文献中,当死亡率受Gompertz定律支配时,存在x岁剩余预期寿命的封闭形式解。这个表达式包含一个特殊的函数,它允许我们构建高精度的近似值,这也有助于评估相对于模型参数的预期寿命弹性。然而,据我所知,生命差异的类似公式并不存在,因此,生命表熵也不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a closed-form expression and its approximation to Gompertz life disparity
BACKGROUND In the literature, there exists a closed form solution to the remaining life expectancy at age x when mortality is governed by the Gompertz law. This expression contains a special function that allows us to construct high-accuracy approximations, which are also helpful in assessing the elasticity of life expectancy with respect to the model parameters. However, to my knowledge, a similar formulation for life disparity does not exist, and as a consequence, it does not exist for life table entropy either.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Demographic Research
Demographic Research DEMOGRAPHY-
CiteScore
3.90
自引率
4.80%
发文量
63
审稿时长
28 weeks
期刊介绍: Demographic Research is a free, online, open access, peer-reviewed journal of the population sciences published by the Max Planck Institute for Demographic Research in Rostock, Germany. The journal pioneers an expedited review system. Contributions can generally be published within one month after final acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信