简单、时间和跳跃约束循环枚举的快速并行算法

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
J. Blanuša, K. Atasu, P. Ienne
{"title":"简单、时间和跳跃约束循环枚举的快速并行算法","authors":"J. Blanuša, K. Atasu, P. Ienne","doi":"10.1145/3611642","DOIUrl":null,"url":null,"abstract":"Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"10 1","pages":"1 - 35"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Parallel Algorithms for Enumeration of Simple, Temporal, and Hop-constrained Cycles\",\"authors\":\"J. Blanuša, K. Atasu, P. Ienne\",\"doi\":\"10.1145/3611642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.\",\"PeriodicalId\":42115,\"journal\":{\"name\":\"ACM Transactions on Parallel Computing\",\"volume\":\"10 1\",\"pages\":\"1 - 35\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

循环是基本的子图模式之一,能够在图中枚举它们可以在各种领域中得到重要的应用,包括金融、生物、化学和网络科学。然而,要在实际应用程序中启用循环枚举,需要高效的并行算法。在这项工作中,我们提出了最先进的顺序算法的可扩展并行化,用于枚举简单的、时间的和跳跃约束的循环。首先,我们将重点放在简单循环枚举问题上,并以细粒度的方式并行化Johnson、Read和Tarjan的算法。我们从理论上证明了我们得到的细粒度并行算法是可扩展的,其中细粒度并行Read-Tarjan算法具有强可扩展性。相反,我们表明,这些利用边缘或顶点级并行性的简单循环枚举算法的直接粗粒度并行版本是不可扩展的。接下来,我们调整我们的细粒度方法,以便在时间窗口、时间和跳跃约束下枚举循环。我们对具有256个CPU内核的集群进行了评估,该集群可以同时执行1,024个线程,在上述约束下枚举周期时,我们的细粒度并行算法具有近似线性的可伸缩性。在同一个集群上,我们的细粒度并行算法与循环枚举的最先进算法的粗粒度并行版本相比,平均实现了一个数量级的加速。细粒度和粗粒度并行算法之间的性能差距随着我们使用更多的CPU内核而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Parallel Algorithms for Enumeration of Simple, Temporal, and Hop-constrained Cycles
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信