{"title":"简单、时间和跳跃约束循环枚举的快速并行算法","authors":"J. Blanuša, K. Atasu, P. Ienne","doi":"10.1145/3611642","DOIUrl":null,"url":null,"abstract":"Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Parallel Algorithms for Enumeration of Simple, Temporal, and Hop-constrained Cycles\",\"authors\":\"J. Blanuša, K. Atasu, P. Ienne\",\"doi\":\"10.1145/3611642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Parallel Algorithms for Enumeration of Simple, Temporal, and Hop-constrained Cycles
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required. In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window, temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024 simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.