对流逻辑门计算与热通信

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Stuart Bartlett;Andrew K. Gao;Yuk L. Yung
{"title":"对流逻辑门计算与热通信","authors":"Stuart Bartlett;Andrew K. Gao;Yuk L. Yung","doi":"10.1162/artl_a_00358","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel computational architecture based on fluid convection logic gates and heat flux-mediated information flows. Our previous work demonstrated that Boolean logic operations can be performed by thermally driven convection flows. In this work, we use numerical simulations to demonstrate a different , but universal Boolean logic operation (NOR), performed by simpler convective gates. The gates in the present work do not rely on obstacle flows or periodic boundary conditions, a significant improvement in terms of experimental realizability. Conductive heat transfer links can be used to connect the convective gates, and we demonstrate this with the example of binary half addition. These simulated circuits could be constructed in an experimental setting with modern, 2-dimensional fluidics equipment, such as a thin layer of fluid between acrylic plates. The presented approach thus introduces a new realm of unconventional, thermal fluid-based computation.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"28 1","pages":"96-107"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computation by Convective Logic Gates and Thermal Communication\",\"authors\":\"Stuart Bartlett;Andrew K. Gao;Yuk L. Yung\",\"doi\":\"10.1162/artl_a_00358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a novel computational architecture based on fluid convection logic gates and heat flux-mediated information flows. Our previous work demonstrated that Boolean logic operations can be performed by thermally driven convection flows. In this work, we use numerical simulations to demonstrate a different , but universal Boolean logic operation (NOR), performed by simpler convective gates. The gates in the present work do not rely on obstacle flows or periodic boundary conditions, a significant improvement in terms of experimental realizability. Conductive heat transfer links can be used to connect the convective gates, and we demonstrate this with the example of binary half addition. These simulated circuits could be constructed in an experimental setting with modern, 2-dimensional fluidics equipment, such as a thin layer of fluid between acrylic plates. The presented approach thus introduces a new realm of unconventional, thermal fluid-based computation.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"28 1\",\"pages\":\"96-107\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9931089/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9931089/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要提出了一种基于流体对流逻辑门和热流介导信息流的新型计算架构。我们以前的工作表明,布尔逻辑运算可以由热驱动的对流流来执行。在这项工作中,我们使用数值模拟来演示一种不同的,但通用的布尔逻辑运算(NOR),由更简单的对流门执行。本工作中的门不依赖于障碍物流动或周期性边界条件,在实验可实现性方面有显着改善。传导传热链可以用来连接对流门,我们用二元半加法的例子来证明这一点。这些模拟电路可以在现代二维流体设备的实验环境中构建,例如在丙烯酸板之间的薄层流体。因此,所提出的方法引入了一个非常规的、基于热流体的计算的新领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation by Convective Logic Gates and Thermal Communication
We demonstrate a novel computational architecture based on fluid convection logic gates and heat flux-mediated information flows. Our previous work demonstrated that Boolean logic operations can be performed by thermally driven convection flows. In this work, we use numerical simulations to demonstrate a different , but universal Boolean logic operation (NOR), performed by simpler convective gates. The gates in the present work do not rely on obstacle flows or periodic boundary conditions, a significant improvement in terms of experimental realizability. Conductive heat transfer links can be used to connect the convective gates, and we demonstrate this with the example of binary half addition. These simulated circuits could be constructed in an experimental setting with modern, 2-dimensional fluidics equipment, such as a thin layer of fluid between acrylic plates. The presented approach thus introduces a new realm of unconventional, thermal fluid-based computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信